Patents by Inventor Jesse Nachlas

Jesse Nachlas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070025890
    Abstract: An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes a syringe having a barrel and a plunger and having an ozone generator associated therewith. The generator is initiated and a therapeutic gas is accumulated within the barrel, at which point it can be delivered from the barrel into a target site via a needle, thereby delivering therapeutic effects to that target site.
    Type: Application
    Filed: August 1, 2005
    Publication date: February 1, 2007
    Inventors: Ashok Joshi, James Steppan, Jesse Nachlas
  • Publication number: 20070012566
    Abstract: A mixed potential NOx sensor apparatus for measuring the total NOx concentration in a gas stream is disclosed. The NOx sensing apparatus comprises a multilayer ceramic structure with electrodes for sensing both oxygen and NOx gas concentrations and includes screen-printed metallized patterns that function to heat the ceramic sensing element to the proper temperature for optimum performance. This design may provide advantages over the existing technology by miniaturizing the sensing element to provide potentially faster sensor light off times and thereby reduce undesired exhaust gas emissions. By incorporating the heating source within the ceramic sensing structure, the time to reach the temperature of operation is shortened, and thermal gradients and stresses are minimized. These improvements may provide increased sensor performance, reliability, and lifetime.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 18, 2007
    Inventors: Balakrishnan Nair, Jesse Nachlas
  • Publication number: 20060194330
    Abstract: A mixed potential sensor device and methods for measuring total ammonia (NH3) concentration in a gas is provided. The gas is first partitioned into two streams directed into two sensing chambers. Each gas stream is conditioned by a specific catalyst system. In one chamber, in some instances at a temperature of at least about 600° C., the gas is treated such that almost all of the ammonia is converted to NOx, and a steady state equilibrium concentration of NO to NO2 is established. In the second chamber, the gas is treated with a catalyst at a lower temperature, preferably less than 450° C. such that most of the ammonia is converted to nitrogen (N2) and steam (H2O). Each gas is passed over a sensing electrode in a mixed potential sensor system that is sensitive to NOx. The difference in the readings of the two gas sensors can provide a measurement of total NH3 concentration in the exhaust gas. The catalyst system also functions to oxidize any unburned hydrocarbons such as CH4, CO, etc.
    Type: Application
    Filed: December 22, 2005
    Publication date: August 31, 2006
    Inventors: Balakrishnan Nair, Jesse Nachlas
  • Publication number: 20060027465
    Abstract: The present invention is a method and apparatus for measuring the total NOx concentration in a gas stream utilizing the principles of a NOx sensor, i.e., mixed potential sensor. The exhaust gas is first conditioned by a catalyst assembly that converts the various species of nitrogen oxide gases present to a fixed steady state concentration ratio of NO2/NO, where NO2 is approximately 0-10% of the total NOx concentration present in the gas exhaust, thereby enabling the NOx sensor to generate a meaningful and reproducible determination of the concentration of total NOx present in the gas being measured. The catalyst assembly also functions to oxidize any unburned combustibles such as CH4, CO, etc., and remove potential contaminants such as SO2.
    Type: Application
    Filed: May 25, 2005
    Publication date: February 9, 2006
    Inventors: Balakrishnan Nair, Jesse Nachlas, Michael Middlemas
  • Patent number: 5479700
    Abstract: An ion conducting device having a plurality of solid electrolyte plates arranged into a stack, each electrolyte plate having electrode material adherent to a significant portion thereof. A plurality of individual spacers are disposed between adjacent electrolyte plates in the stack, each spacer spacing successive electrolyte plates apart, and defining a plurality of chambers in the spaces between adjacent electrolyte plates. The electrode material on the electrolyte plates is electrically connected whereby electrode material on every other successive plate is connected in series, from one end of the stack to the other, whereupon the electrical path wraps around the stack and extends back along the stack and connects in series the electrodes not previously connected.
    Type: Grant
    Filed: March 29, 1994
    Date of Patent: January 2, 1996
    Assignee: Ceramatec, Inc.
    Inventors: Jesse A. Nachlas, Kelly B. Powers, James R. McJunkin
  • Patent number: 5454923
    Abstract: A process and system for removing trace amounts of oxygen as an impurity in inert gases is disclosed. The process and system involve an electrochemical cell containing an oxygen ion transporting, solid state metal oxide electrolyte having a high thermodynamic potential and having only one thermodynamically stable valence state for the metal ion component of the electrolyte. The electrolyte is coated with a perovskite anode and a metallic cathode. Operation is conducted at high voltages, e.g., 1.5 volts and above, at elevated temperatures. Purification of inert gases to an oxygen content of about 1 ppm is readily achievable.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: October 3, 1995
    Assignee: Ceramatec, Inc.
    Inventors: Jesse A. Nachlas, Dale M. Taylor
  • Patent number: 5338623
    Abstract: An electrochemical device is disclosed comprising a plurality of electrolytic cells, each having an oxygen ion-conducting electrolyte, an anode and a cathode associated with the electrolyte, conductive interconnecting structures electrically connecting the anode of each electrolytic cell to the cathode of an adjacent tubular cell, and sealing means positioned between the interconnecting structure and the electrolytic cells to provide a gas-tight seal therebetween. The configuration of the interconnecting structure and the placement of the seal means provides a separation between the seal and the conductive pathway of electrons between the anode and cathode to prevent corrosion or deterioration of the seal thereby compromising the pneumatic integrity of the device.
    Type: Grant
    Filed: February 28, 1992
    Date of Patent: August 16, 1994
    Assignee: Ceramatec, Inc.
    Inventors: Jesse A. Nachlas, Dale M. Taylor, Merrill A. Wilson