Patents by Inventor Jesse Sol Levinson

Jesse Sol Levinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12282889
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 22, 2025
    Assignee: Zoox, Inc.
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Patent number: 12264938
    Abstract: Techniques are discussed for modifying map elements associated with map data. Map data can include three-dimensional data (e.g., LIDAR data) representing an environment, while map elements can be associated with the map data to identify locations and semantic information associated with an environment, such as regions that correspond to driving lanes or crosswalks. A trajectory associated with the map data can be updated, such as when aligning one or more trajectories in response to a loop closure, updated calibration, etc. The transformation between a trajectory and an updated trajectory can be applied to map elements to warp the map elements so that they correspond to the updated map data, thereby providing automatic and accurate techniques for updating map elements associated with map data.
    Type: Grant
    Filed: September 15, 2023
    Date of Patent: April 1, 2025
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Patrick Blaes, Aleksandrs Ecins, Jesse Sol Levinson, Daniel Miller
  • Patent number: 12265386
    Abstract: Systems, apparatus, and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data and sensory input in real-time to detect an object. In particular, a method may include determining a predicted object path of the object. The method may further include determining a predict point of impact between the autonomous vehicle and the object based in part on the predicted object path. The method may further include identifying a preferred point of impact that is associated with a safety system disposed on the autonomous vehicle. The method may further include causing the autonomous vehicle to perform a maneuver based in part on the preferred point of impact.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: April 1, 2025
    Assignee: Zoox, Inc.
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Rachad Youssef Gamara, Gabriel Thurston Sibley
  • Patent number: 12243002
    Abstract: Techniques for item delivery and delivery systems including autonomous delivery vehicles used to identify optimal delivery locations and/or deliver physical items to pedestrians is discussed herein. In some examples, a fleet management system may receive sensor data captured from sensor devices of vehicles of a fleet of vehicles while traversing within an environment. The fleet management system may use the sensor data to identify region(s) of the environment within which a threshold number of pedestrians may be located. Based on identifying a region having a threshold number of pedestrians, the fleet management system may determine how many vehicles of the fleet of vehicles are available to render delivery services to the pedestrians within the region. In some examples, the fleet management system may identify an available vehicle of the fleet of vehicles to which instructions may be sent. Such instructions may include transporting items to pedestrians within the region.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: March 4, 2025
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Daniel Earl Meyer, Valmiki Satya Rampersad
  • Patent number: 12202524
    Abstract: Techniques for item delivery including autonomous delivery vehicles used to identify optimal delivery locations and/or deliver physical items to pedestrians are discussed herein. In some examples, a vehicle may receive the instructions from a fleet management system. The vehicle may determine that the instructions cause the vehicle to deliver a quantity of goods to a specified region within the environment. Based on the instructions, the vehicle may transition to a delivery vehicle and navigate to the region. Upon arriving to the region, the vehicle may receive sensor data captured from sensor devices of the vehicle. Such sensor data may be used to detect a plurality of pedestrians within the region. Based on identifying the plurality of pedestrians within the region, the vehicle may determine a dispensing strategy. In some examples, the vehicle may deliver the goods to the plurality of pedestrians within the region according to the dispensing strategy.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: January 21, 2025
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Daniel Earl Meyer, Valmiki Satya Rampersad
  • Patent number: 12175415
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 24, 2024
    Assignee: Zoox, Inc.
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Publication number: 20240318957
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score comprising an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Application
    Filed: May 1, 2024
    Publication date: September 26, 2024
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Patent number: 12007228
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score comprising an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: June 11, 2024
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Publication number: 20240110811
    Abstract: Techniques are discussed for modifying map elements associated with map data. Map data can include three-dimensional data (e.g., LIDAR data) representing an environment, while map elements can be associated with the map data to identify locations and semantic information associated with an environment, such as regions that correspond to driving lanes or crosswalks. A trajectory associated with the map data can be updated, such as when aligning one or more trajectories in response to a loop closure, updated calibration, etc. The transformation between a trajectory and an updated trajectory can be applied to map elements to warp the map elements so that they correspond to the updated map data, thereby providing automatic and accurate techniques for updating map elements associated with map data.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 4, 2024
    Inventors: Derek Adams, Patrick Blaes, Aleksandrs Ecins, Jesse Sol Levinson, Daniel Miller
  • Publication number: 20240028031
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include monitoring a fleet of vehicles, at least one of which is configured to autonomously transit from a first geographic region to a second geographic region, detecting data indicating an event associated with the vehicle having a calculated confidence level, receiving data representing a subset of candidate trajectories responsive to detecting the event, which is associated with a planned path for the vehicle, identifying guidance data to select from one or more of the candidate trajectories as a guided trajectory, receiving data representing a selection of a candidate trajectory, and transmitting the selection of the candidate trajectory as of the guided trajectory to the vehicle.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 25, 2024
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Rachad Youssef Gamara, Gabriel Thurston Sibley
  • Patent number: 11809178
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: November 7, 2023
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11796998
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include monitoring a fleet of vehicles, at least one of which is configured to autonomously transit from a first geographic region to a second geographic region, detecting data indicating an event associated with the vehicle having a calculated confidence level, receiving data representing a subset of candidate trajectories responsive to detecting the event, which is associated with a planned path for the vehicle, identifying guidance data to select from one or more of the candidate trajectories as a guided trajectory, receiving data representing a selection of a candidate trajectory, and transmitting the selection of the candidate trajectory as of the guided trajectory to the vehicle.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 24, 2023
    Assignee: Zoox, Inc.
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Rachad Youssef Gamara, Gabriel Thurston Sibley
  • Patent number: 11774979
    Abstract: Techniques are discussed for determining a data level for portions of data for processing. In some cases, a data level can correspond to a resolution level, a compression level, a bit rate, and the like. In the context of image data, the techniques can determine a region of first image data to be processed a high resolution and a region of second image data to be processed at a low resolution. The regions can be determined by a machine learned algorithm that is trained to output identifications of such regions. Training data may be determined by identifying differences in outputs based on the first and second image data. The image data associated with the determined regions and the determined resolutions can be processed to perform object detection, classification, segmentation, bounding box generation, and the like, thereby conserving processing, bandwidth, and/or memory resources in real time systems.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: October 3, 2023
    Assignee: Zoox, Inc.
    Inventor: Jesse Sol Levinson
  • Patent number: 11761791
    Abstract: Techniques are discussed for modifying map elements associated with map data. Map data can include three-dimensional data (e.g., LIDAR data) representing an environment, while map elements can be associated with the map data to identify locations and semantic information associated with an environment, such as regions that correspond to driving lanes or crosswalks. A trajectory associated with the map data can be updated, such as when aligning one or more trajectories in response to a loop closure, updated calibration, etc. The transformation between a trajectory and an updated trajectory can be applied to map elements to warp the map elements so that they correspond to the updated map data, thereby providing automatic and accurate techniques for updating map elements associated with map data.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: September 19, 2023
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Patrick Blaes, Aleksandrs Ecins, Jesse Sol Levinson, Daniel Miller
  • Patent number: 11714423
    Abstract: Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 1, 2023
    Assignee: Zoox, Inc.
    Inventors: Bertrand Robert Douillard, Subhasis Das, Zeng Wang, Dragomir Dimitrov Anguelov, Jesse Sol Levinson
  • Publication number: 20230085571
    Abstract: Techniques are discussed for determining a data level for portions of data for processing. In some cases, a data level can correspond to a resolution level, a compression level, a bit rate, and the like. In the context of image data, the techniques can determine a region of first image data to be processed a high resolution and a region of second image data to be processed at a low resolution. The regions can be determined by a machine learned algorithm that is trained to output identifications of such regions. Training data may be determined by identifying differences in outputs based on the first and second image data. The image data associated with the determined regions and the determined resolutions can be processed to perform object detection, classification, segmentation, bounding box generation, and the like, thereby conserving processing, bandwidth, and/or memory resources in real time systems.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 16, 2023
    Inventor: Jesse Sol Levinson
  • Patent number: 11468395
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 11, 2022
    Assignee: Zoox, Inc.
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Patent number: 11454976
    Abstract: Techniques are discussed for determining a data level for portions of data for processing. In some cases, a data level can correspond to a resolution level, a compression level, a bit rate, and the like. In the context of image data, the techniques can determine a region of first image data to be processed a high resolution and a region of second image data to be processed at a low resolution. The regions can be determined by a machine learned algorithm that is trained to output identifications of such regions. Training data may be determined by identifying differences in outputs based on the first and second image data. The image data associated with the determined regions and the determined resolutions can be processed to perform object detection, classification, segmentation, bounding box generation, and the like, thereby conserving processing, bandwidth, and/or memory resources in real time systems.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: September 27, 2022
    Assignee: Zoox, Inc.
    Inventor: Jesse Sol Levinson
  • Patent number: 11423938
    Abstract: A method includes receiving a first signal from a first sensor, the first signal including data representing an environment. The method also includes receiving a second signal from a second sensor, the second signal including data representing the environment. The method further includes determining a group of objects based at least in part on the received data, and identifying an error associated with data included in the first signal and/or the second signal.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: August 23, 2022
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Nitesh Shroff
  • Publication number: 20220260994
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 18, 2022
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson