Patents by Inventor Jesse Sol Levinson

Jesse Sol Levinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175132
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score including an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 16, 2021
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Patent number: 11157527
    Abstract: A system may receive a sensor dataset representing an environment and use the dataset to create or update a map. In creating or updating the map, the system may determine an object classification of one or more detected objects and only selectively incorporate data into the map based at least in part on the classification. The map may be associated with the classification (or semantic) information of the objects, as well as weights based on the classification. Similarly, datasets with selected classes of data removed may be used for system localization. Further, the system may determine an object track of the objects. When updating the map, voxels in a voxel space may indicate an occupied voxel based on a threshold number of observances. The object track and clean map can then be used for controlling an autonomous vehicle.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 26, 2021
    Assignee: Zoox, Inc.
    Inventors: Zeng Wang, Nitesh Shroff, Dragomir Dimitrov Anguelov, Subhasis Das, Jesse Sol Levinson, Brice Rebsamen
  • Patent number: 11157768
    Abstract: Techniques are discussed for determining a data level for portions of data for processing. In some cases, a data level can correspond to a resolution level, a compression level, a bit rate, and the like. In the context of image data, the techniques can determine a region of first image data to be processed a high resolution and a region of second image data to be processed at a low resolution. The regions can be determined by a machine learned algorithm that is trained to output identifications of such regions. Training data may be determined by identifying differences in outputs based on the first and second image data. The image data associated with the determined regions and the determined resolutions can be processed to perform object detection, classification, segmentation, bounding box generation, and the like, thereby conserving processing, bandwidth, and/or memory resources in real time systems.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 26, 2021
    Assignee: Zoox, Inc.
    Inventor: Jesse Sol Levinson
  • Patent number: 11151447
    Abstract: This disclosure describes methods, apparatuses, and systems for network training and testing for evaluating hardware characteristics and for hardware selection. For example, a sensor can capture a dataset, which may be transformed into a plurality of modified datasets to simulate changes to hardware. Each of the plurality of modified datasets may be used to individually train an untrained neural network, thereby producing a plurality of trained neural networks. In order to evaluate the trained neural networks, each neural network can be used to ingest an evaluation dataset to perform a variety of tasks, such as identifying various objects within the dataset. A performance of each neural network can be determined and compared. A performance curve can be determined for each characteristic under review, facilitating a selection of one or more hardware components and/or configurations.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 19, 2021
    Assignee: Zoox, Inc.
    Inventors: Robert Chen, Jesse Sol Levinson, Ryan McMichael, James William Vaisey Philbin, Maxwell Yaron
  • Patent number: 11106218
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide map data for autonomous vehicles. In particular, a method may include accessing subsets of multiple types of sensor data, aligning subsets of sensor data relative to a global coordinate system based on the multiple types of sensor data to form aligned sensor data, and generating datasets of three-dimensional map data. The method further includes detecting a change in data relative to at least two datasets of the three-dimensional map data and applying the change in data to form updated three-dimensional map data. The change in data may be representative of a state change of an environment at which the sensor data is sensed. The state change of the environment may be related to the presence or absences of an object located therein.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: August 31, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley
  • Publication number: 20210252715
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Application
    Filed: December 22, 2020
    Publication date: August 19, 2021
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Publication number: 20210256472
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Application
    Filed: December 22, 2020
    Publication date: August 19, 2021
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Publication number: 20210256466
    Abstract: An autonomous delivery vehicle including locking storage containers may be used for item deliveries, rejections, returns, and/or third-party fulfillment. A delivery vehicle or robot may include a number of locking storage containers, an authorization interface, and one or more sensors to receive delivery requests, detect and authorize users, and control locker access at various delivery locations to allow users to receive delivered items, and reject or return items. The vehicle may also include a passenger compartment to transport one or more passengers. The vehicle may be reconfigurable to accommodate different combinations of lockers and/or passenger seats. An item delivery system may receive delivery requests and determine routes for delivery vehicles, including centralized delivery locations and/or direct deliveries to recipients.
    Type: Application
    Filed: December 22, 2020
    Publication date: August 19, 2021
    Inventors: Ali Javidan, Jesse Sol Levinson, Christopher John Stoffel
  • Patent number: 11091092
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam-forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle-related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 17, 2021
    Assignee: Zoox, Inc.
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Amanda Blair Lind
  • Publication number: 20210249047
    Abstract: A method includes receiving a first signal from a first sensor, the first signal including data representing an environment. The method also includes receiving a second signal from a second sensor, the second signal including data representing the environment. The method further includes determining a group of objects based at least in part on the received data, and identifying an error associated with data included in the first signal and/or the second signal.
    Type: Application
    Filed: March 29, 2021
    Publication date: August 12, 2021
    Inventors: Jesse Sol Levinson, Nitesh Shroff
  • Patent number: 11061398
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 13, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 11022974
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving an indication of a sensor anomaly, determining one or more sensor recovery strategies based on the sensor anomaly, and executing a course of action that ensures the autonomous vehicle system operates within accepted parameters. Alternative sensors may be relied upon to cover for the sensor anomaly, which may include a failed sensor while the autonomous vehicle is in operation.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: June 1, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Timothy David Kentley-Klay, Bertrand Robert Douillard
  • Patent number: 11022970
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 1, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 10983199
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score comprising an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: April 20, 2021
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Patent number: 10976732
    Abstract: A teleoperator device may be configured to obtain a request for teleoperator assistance from a driverless vehicle and obtain teleoperator data in response to the request. The teleoperator device may also be configured to record at least some of the teleoperator input and/or guidance transmitted to the driverless vehicle based on the teleoperator input. Upon receiving a subsequent request, the teleoperator device may be configured to reproduce at least part of the former teleoperator input and/or to provide an option to activate guidance associated with the teleoperator input. The teleoperator device may also be configured to train a model and/or use a model to determine from vehicle data an option for presentation via a teleoperator interface and/or a presentation configuration of the teleoperator interface.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 13, 2021
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10964349
    Abstract: A method includes receiving a first signal from a first sensor, the first signal including data representing an environment. The method also includes receiving a second signal from a second sensor, the second signal including data representing the environment. The method further includes determining a group of objects based at least in part on the received data, and identifying an error associated with data included in the first signal and/or the second signal.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: March 30, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Nitesh Shroff
  • Patent number: 10921811
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to generate trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving path data to navigate from a first geographic location to a second geographic location, generating data representing a trajectory with which to control motion of the autonomous vehicle based on the path data, generating data representing a contingent trajectory, monitoring generation of the trajectory, and implementing the contingent trajectory subsequent to an absence of the trajectory.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: February 16, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Timothy David Kentley-Klay
  • Publication number: 20210041250
    Abstract: Techniques are discussed for modifying map elements associated with map data. Map data can include three-dimensional data (e.g., LIDAR data) representing an environment, while map elements can be associated with the map data to identify locations and semantic information associated with an environment, such as regions that correspond to driving lanes or crosswalks. A trajectory associated with the map data can be updated, such as when aligning one or more trajectories in response to a loop closure, updated calibration, etc. The transformation between a trajectory and an updated trajectory can be applied to map elements to warp the map elements so that they correspond to the updated map data, thereby providing automatic and accurate techniques for updating map elements associated with map data.
    Type: Application
    Filed: September 21, 2020
    Publication date: February 11, 2021
    Inventors: Derek Adams, Patrick Blaes, Aleksandrs Ecins, Jesse Sol Levinson, Daniel Miller
  • Patent number: 10884428
    Abstract: Techniques for decimating portions of a map of an environment are discussed herein. The environment can be represented by a three-dimensional (3D) map including a plurality of polygons and semantic information associated with the polygons. In some cases, decimation operations may be based on semantic information associated with the environment. Differing decimation operations and/or levels may be applied to polygons of different semantic classifications or differing contribution levels. Boundaries between regions having different semantic information can be preserved. Meshes can be decimated using different decimation operators or decimation levels and an accuracy of localizing can be compared using the various decimated meshes. An optimal mesh can be selected and sent to vehicles for localizing the vehicles in the environment.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 5, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Publication number: 20200371533
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include monitoring a fleet of vehicles, at least one of which is configured to autonomously transit from a first geographic region to a second geographic region, detecting data indicating an event associated with the vehicle having a calculated confidence level, receiving data representing a subset of candidate trajectories responsive to detecting the event, which is associated with a planned path for the vehicle, identifying guidance data to select from one or more of the candidate trajectories as a guided trajectory, receiving data representing a selection of a candidate trajectory, and transmitting the selection of the candidate trajectory as of the guided trajectory to the vehicle.
    Type: Application
    Filed: July 13, 2020
    Publication date: November 26, 2020
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Rachad Youssef Gamara, Gabriel Thurston Sibley