Patents by Inventor Jessica S. Kachian

Jessica S. Kachian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9768013
    Abstract: Methods and apparatus for processing a substrate are described herein. Methods for passivating dielectric materials include forming alkyl silyl moieties on exposed surfaces of the dielectric materials. Suitable precursors for forming the alkyl silyl moieties include (trimethylsilyl)pyrrolidine, aminosilanes, and dichlorodimethylsilane, among others. A capping layer may be selectively deposited on source/drain materials after passivation of the dielectric materials. Apparatus for performing the methods described herein include a platform comprising a transfer chamber, a pre-clean chamber, an epitaxial deposition chamber, a passivation chamber, and an atomic layer deposition chamber.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: September 19, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Abhishek Dube, Schubert S. Chu, Jessica S. Kachian, David Thompson, Jeffrey Anthis
  • Publication number: 20170194506
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 9691848
    Abstract: Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jessica S. Kachian, Marc C. French, Aaron A. Budrevich
  • Patent number: 9640671
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20170084449
    Abstract: Methods and apparatus for processing a substrate are described herein. Methods for passivating dielectric materials include forming alkyl silyl moieties on exposed surfaces of the dielectric materials. Suitable precursors for forming the alkyl silyl moieties include (trimethylsilyl)pyrrolidine, aminosilanes, and dichlorodimethylsilane, among others. A capping layer may be selectively deposited on source/drain materials after passivation of the dielectric materials. Apparatus for performing the methods described herein include a platform comprising a transfer chamber, a pre-clean chamber, an epitaxial deposition chamber, a passivation chamber, and an atomic layer deposition chamber.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 23, 2017
    Inventors: Abhishek DUBE, Schubert S. CHU, Jessica S. KACHIAN, David THOMPSON, Jeffrey ANTHIS
  • Publication number: 20170047401
    Abstract: Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
    Type: Application
    Filed: October 25, 2016
    Publication date: February 16, 2017
    Inventors: Willy Rachmady, Van H. LE, Ravi PILLARISETTY, Jessica S. KACHIAN, Marc C. FRENCH, Aaron A. BUDREVICH
  • Publication number: 20170040158
    Abstract: The present disclosure provides for semiconductor fabrication processes that include atomic layer depositions. Embodiments described herein provide for formation of a diffusion barrier or gate dielectric layer in preparation for subsequent ALD on semiconductor surfaces. More specifically, embodiments of the present disclosure provide for the formation of fin field effect transistor (FinFET) and metal oxide semiconductor field effect transistor (MOSFET) devices utilizing improved ALD processes.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Inventors: Jessica S. KACHIAN, Naomi YOSHIDA, Mei CHANG, Andrew C. KUMMEL, Mary EDMONDS
  • Publication number: 20170040159
    Abstract: Embodiments described herein provide a self-limiting and saturating Si—Ox bilayer process which does not require the use of a plasma or catalyst and that does not lead to undesirable substrate oxidation. Methods of the disclosure do not produce SiO2, but instead produce a saturated Si—Ox film with —OH termination to make substrate surfaces highly reactive towards metal ALD precursors to seed high nucleation and growth of gate oxide ALD materials.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Inventors: Jessica S. KACHIAN, Naomi YOSHIDA, Mei CHANG, Mary EDMONDS, Andrew C. KUMMEL, Sang Wook PARK, Hyunwoong KIM
  • Patent number: 9490329
    Abstract: Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 8, 2016
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jessica S. Kachian, Marc C. French, Aaron A. Budrevich
  • Publication number: 20160233344
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20160181089
    Abstract: A method of reducing line bending and surface roughness of a substrate with pillars includes forming a treated surface by treating a pillar-containing substrate with a radical. The radical may be silicon-based, nitrogen-based or oxygen-based. The method may include forming a dielectric film over the treated surface by reacting an organosilicon precursor and an oxygen precursor. The method may include curing the dielectric film at a temperature of about 150° C. or less. A method of reducing line bending and surface roughness of a substrate with pillars includes forming a dielectric film over a pillar-containing substrate by reacting an organosilicon precursor, an oxygen precursor, and a radical precursor. The method may include curing the dielectric film at a temperature of about 150° C. or less. The radical precursor may be selected from the group consisting of nitrogen-based radical precursor, oxygen-based radical precursor, and silicon-based radical precursor.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 23, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei LIANG, Kiran V. THADANI, Jessica S. KACHIAN, Nagarajan RAJAGOPALAN
  • Patent number: 9337291
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 10, 2016
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20160079422
    Abstract: A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. A channel nanowire having a third lattice is formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. A gate dielectric layer is formed on and all-around the channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding the channel nanowire.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 17, 2016
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Lee, Jack T. Kavalieros, Robert S. Chau, Jessica S. Kachian
  • Publication number: 20160049476
    Abstract: Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 18, 2016
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jessica S. Kachian, Marc C. French, Aaron A. Budrevich
  • Patent number: 9252275
    Abstract: A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. Channel nanowires having a third lattice are formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. The channel nanowires include a bottom-most channel nanowire and a bottom gate isolation is formed on the top surface of the substrate under the bottom-most channel nanowire. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding each channel nanowire.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 2, 2016
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Lee, Jack T. Kavalieros, Robert S. Chau, Jessica S. Kachian
  • Publication number: 20150349077
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20150303058
    Abstract: Methods for depositing silicon include cycling dosing between 1 and 100 cycles of one or more first chlorosilane precursors on a III-V surface at a temperature between 300° C. and 500° C. to form a first layer. Methods may include desorbing chlorine from the first layer by treating the first layer with atomic hydrogen to form a second layer. Methods may include forming a silicon multilayer on the second layer by cycling dosing between 1 and 100 cycles of one or more second chlorosilane precursors and atomic hydrogen at a temperature between 300° C. and 500° C. A layered composition includes a first layer selected from the group consisting of InxGa1-xAs, InxGa1-xSb, InxGa1-xN, SiGe, and Ge, wherein X is between 0.1 and 0.99, and a second layer, wherein the second layer comprises Si—H and Si—OH.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 22, 2015
    Inventors: Andrew C. KUMMEL, Mary EDMONDS, Mei CHANG, Jessica S. KACHIAN
  • Patent number: 9159787
    Abstract: Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: October 13, 2015
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jessica S. Kachian, Marc C. French, Aaron A. Budrevich
  • Patent number: 9136343
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 15, 2015
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20150144880
    Abstract: A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. Channel nanowires having a third lattice are formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. The channel nanowires include a bottom-most channel nanowire and a bottom gate isolation is formed on the top surface of the substrate under the bottom-most channel nanowire. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding each channel nanowire.
    Type: Application
    Filed: December 23, 2014
    Publication date: May 28, 2015
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Lee, Jack T. Kavalieros, Robert S. Chau, Jessica S. Kachian