Patents by Inventor Ji-Cheng Zhao

Ji-Cheng Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040126613
    Abstract: A turbine component comprises a substrate; and a crystalline coating disposed on a surface of the substrate, wherein the crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating. A method of making a turbine component comprises disposing a coating composition on a substrate, wherein the coating composition comprises tin and yttrium in an amount greater than or equal to about 0.1 atomic percent based upon the total coating composition. A crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating.
    Type: Application
    Filed: December 27, 2002
    Publication date: July 1, 2004
    Inventors: Bernard Bewlay, Melvin Jackson, Ji-Cheng Zhao
  • Publication number: 20040126237
    Abstract: One exemplary embodiment of a turbine component (which may be a blade) comprises a substrate comprising a silicide-based material, a plurality of through holes disposed in the substrate, the holes being configured to receive an airflow, a silicide coating disposed at the surfaces of the substrate and the through holes, and a thermal barrier coating disposed at the silicide coating. In another exemplary embodiment the silicide coating may be replaced by a Laves phase-containing layer. In still another exemplary embodiment the silicide coating may be replaced by a diffusion barrier layer disposed at a surface of the substrate and a platinum group metal layer disposed at the diffusion barrier layer. One exemplary embodiment of a blade may comprise an airfoil comprising a silicide-based material and through holes disposed therein, a cooling plenum disposed in the airfoil, and a base configured to receive the airfoil in a dovetail fit, the base comprising a superalloy.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Melvin Jackson, Pazhayannur Subramanian, Ji-Cheng Zhao, Bernard Bewlay, Ramgopal Darolia, Robert Schafrik
  • Patent number: 6746783
    Abstract: A coated article, a coating for protecting an article, and a method for protecting an article are provided. The article comprises a metallic substrate and a substantially single-phase coating disposed on the substrate, wherein the coating comprises nickel (Ni) and at least about 30 atomic percent aluminum (Al); the coating further comprises a gradient in Al composition, the gradient extending from a first Al concentration level at an outer surface of the coating to a second Al concentration level at an interface between the substantially single-phase coating and the substrate, wherein the first Al concentration level is greater than the second Al concentration level and the second concentration level is at least about 30 atomic percent Al.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: June 8, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Don Mark Lipkin
  • Patent number: 6746782
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 8, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Publication number: 20040082069
    Abstract: Non-destructive systems and methods for temperature measurements are described so that the remaining operational life and accumulated damage of high temperature gas turbine components can be assessed. Alloy-based witness coupons and diffusion couple witness coupons are attached to, or directly applied onto, high temperature components so that they experience the same high temperature operation and shut down as the components themselves. The witness coupons are later removed from the components and analyzed, or are analyzed on the component, to determine the change to their microstructure, metallurgy, and/or diffusion characteristics. Since the time each component spends in operation is known, the operating temperatures of the components can be back-calculated from the microstructural, metallurgical, and/or diffusion characteristic changes of the witness coupons. Therefrom, the remaining operational life of the component can be assessed, as can the accumulated damage to the component.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: Liang Jiang, Ji-Cheng Zhao, Lawrence Kool, Melvin Jackson, Canan Hardwicke, Ann Ritter, Ching-Pang Lee
  • Patent number: 6726444
    Abstract: An article for use in a hot gas path of a gas turbine assembly, a metallic skin for such an article, and a method for making such an article are presented with, for example, the article comprising a spar, the spar providing mechanical support for the article and comprising a cooling fluid delivery system, a top end, and a bottom end; a standoff structure attached to the spar, the standoff structure comprising a plurality of spacing elements in a spaced-apart relation to each other, the spacing elements having first ends adjacent to the spar and second ends opposite to the first ends; a skin conformally surrounding the spar and the standoff structure, the skin comprising a top end and a bottom end, wherein the standoff structure separates the spar and the skin, wherein the plurality of spacing elements is disposed with an inner surface of the skin adjacent to the second ends of the spacing elements to form a plurality of plena between the spar and the skin, the plena in fluid communication with the cooling flu
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: April 27, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Liang Jiang, Melvin Robert Jackson, Ramgopal Darolia, Robert Edward Schafrik
  • Patent number: 6720088
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: April 13, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Publication number: 20040022662
    Abstract: A method for protecting an article from a high temperature, oxidative environment is presented, along with alloy compositions and ion plasma deposition targets suitable for use in the method. The method comprises providing a substrate, providing an ion plasma deposition target, and depositing a protective coating onto the substrate using the target in an ion plasma deposition process. The target comprises from about 2 atom percent to about 25 atom percent chromium, and the balance comprises aluminum.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Applicant: General Electric Company
    Inventors: Don Mark Lipkin, Ji-Cheng Zhao
  • Publication number: 20040001965
    Abstract: A coated article, a coating for protecting an article, and a method for protecting an article are provided. The article comprises a metallic substrate and a substantially single-phase coating disposed on the substrate, wherein the coating comprises nickel (Ni) and at least about 30 atomic percent aluminum (Al); the coating further comprises a gradient in Al composition, the gradient extending from a first Al concentration level at an outer surface of the coating to a second Al concentration level at an interface between the substantially single-phase coating and the substrate, wherein the first Al concentration level is greater than the second Al concentration level and the second concentration level is at least about 30 atomic percent Al.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Applicant: General Electric Company One Reserach Circle
    Inventors: Ji-Cheng Zhao, Don Mark Lipkin
  • Patent number: 6644917
    Abstract: A on-line method is provided for detecting wear and/or damage to gas turbine parts. Preferred embodiments of the invention provide a gas turbine comprising parts with smart coatings and collection and detection means to measure wear and erosion of gas turbine parts. In other preferred embodiments, smart coatings are provided comprising chemical taggants that can be collected and detected downstream, thus providing an on-line or in situ evaluation technology for wear and damage to gas turbine parts.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: November 11, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, James Anthony Ruud, John Eric Tkaczyk, Ann Melinda Ritter, Melvin Robert Jackson, Jerome Johnson Tiemann
  • Patent number: 6645560
    Abstract: An environmentally resistant coating (34) for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating (34) comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system (10) having turbine components (11) comprising at least one Nb-based RMIC, the environmentally resistant coating (34) disposed on a surface (33) of the Nb-based RMIC, and a thermal barrier coating (42) disposed on an outer surface (40) of the environmentally resistant coating (34). Methods of making a turbine component (11) having the environmentally resistant coating (34) and coating a Nb-based RMIC substrate (32) with the environmentally resistant coating (34) are also disclosed.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: November 11, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6640546
    Abstract: A wall structure for a gas turbine engine component is provided which comprises a wall having a first side facing a flow of hot gases and a second side exposed to a source of cooling fluid. The wall has a plurality of holes formed therethrough, and an outer layer disposed on the first side. The holes greatly increase the wetted surface area of the wall exposed to cooling flow.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 4, 2003
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno, Ji-Cheng Zhao
  • Publication number: 20030186075
    Abstract: Articles for use in a high-temperature, oxidative environment, methods for manufacturing such articles, and a material system for protecting articles in such an environment are provided where, for example, one article comprises a substrate and a protective layer disposed over the substrate, the protective layer comprising at least about 60 atomic percent of a metal selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
    Type: Application
    Filed: March 18, 2002
    Publication date: October 2, 2003
    Applicant: General Electric CRD
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Publication number: 20030175122
    Abstract: An article for use in a hot gas path of a gas turbine assembly, a metallic skin for such an article, and a method for making such an article are presented with, for example, the article comprising a spar, the spar providing mechanical support for the article and comprising a cooling fluid delivery system, a top end, and a bottom end; a standoff structure attached to the spar, the standoff structure comprising a plurality of spacing elements in a spaced-apart relation to each other, the spacing elements having first ends adjacent to the spar and second ends opposite to the first ends; a skin conformally surrounding the spar and the standoff structure, the skin comprising a top end and a bottom end, wherein the standoff structure separates the spar and the skin, wherein the plurality of spacing elements is disposed with an inner surface of the skin adjacent to the second ends of the spacing elements to form a plurality of plena between the spar and the skin, the plena in fluid communication with the cooling flu
    Type: Application
    Filed: March 18, 2002
    Publication date: September 18, 2003
    Applicant: General Electric Company
    Inventors: Ji-Cheng Zhao, Liang Jiang, Melvin Robert Jackson, Ramgopal Darolia, Robert Edward Schafrik
  • Patent number: 6607847
    Abstract: An article, such as an airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises a first metallic element and a second metallic element, wherein the first metallic element is one of titanium, palladium, zirconium, niobium, and hafnium, and wherein the second metallic element is one of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the first metallic element being different from the second metallic element.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Publication number: 20030148141
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Application
    Filed: February 5, 2002
    Publication date: August 7, 2003
    Applicant: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Publication number: 20030124342
    Abstract: An environmentally resistant coating (34) for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating (34) comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system (10) having turbine components (11) comprising at least one Nb-based RMIC, the environmentally resistant coating (34) disposed on a surface (33) of the Nb-based RMIC, and a thermal barrier coating (42) disposed on an outer surface (40) of the environmentally resistant coating (34). Methods of making a turbine component (11) having the environmentally resistant coating (34) and coating a Nb-based RMIC substrate (32) with the environmentally resistant coating (34) are also disclosed.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 3, 2003
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6586118
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: July 1, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Publication number: 20030118440
    Abstract: A on-line method is provided for detecting wear and/or damage to gas turbine parts. Preferred embodiments of the invention provide a gas turbine comprising parts with smart coatings and collection and detection means to measure wear and erosion of gas turbine parts. In other preferred embodiments, smart coatings are provided comprising chemical taggants that can be collected and detected downstream, thus providing an on-line or in situ evaluation technology for wear and damage to gas turbine parts.
    Type: Application
    Filed: August 14, 2001
    Publication date: June 26, 2003
    Inventors: Ji-Cheng Zhao, James Anthony Ruud, John Eric Tkaczyk, Ann Melinda Ritter, Melvin Robert Jackson, Jerome Johnson Tiemann
  • Publication number: 20030115882
    Abstract: A wall structure for a gas turbine engine component is provided which comprises a wall having a first side facing a flow of hot gases and a second side exposed to a source of cooling fluid. The wall has a plurality of holes formed therethrough, and an outer layer disposed on the first side. The holes greatly increase the wetted surface area of the wall exposed to cooling flow.
    Type: Application
    Filed: December 20, 2001
    Publication date: June 26, 2003
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno, Ji-Cheng Zhao