Patents by Inventor Ji Hae PARK

Ji Hae PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932618
    Abstract: Disclosed are novel compounds of Chemical Formula 1, optical isomers of the compounds, and pharmaceutically acceptable salts of the compounds or the optical isomers. The compounds, isomers, and salts exhibit excellent activity as GLP-1 receptor agonists. In particular, they, as GLP-1 receptor agonists, exhibit excellent glucose tolerance, thus having a great potential to be used as therapeutic agents for metabolic diseases. Moreover, they exhibit excellent pharmacological safety for cardiovascular systems.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: March 19, 2024
    Assignee: ILDONG PHARMACEUTICAL CO., LTD.
    Inventors: Hong Chul Yoon, Kyung Mi An, Myong Jae Lee, Jin Hee Lee, Jeong-geun Kim, A-rang Im, Woo Jin Jeon, Jin Ah Jeong, Jaeho Heo, Changhee Hong, Kyeojin Kim, Jung-Eun Park, Te-ik Sohn, Changmok Oh, Da Hae Hong, Sung Wook Kwon, Jung Ho Kim, Jae Eui Shin, Yeongran Yoo, Min Whan Chang, Eun Hye Jang, In-gyu Je, Ji Hye Choi, Gunhee Kim, Yearin Jun
  • Publication number: 20240079413
    Abstract: A complementary thin film transistor (TFT) includes a substrate and a first TFT and a second TFT disposed on the substrate, wherein a first conductive semiconductor layer of the first TFT and a second gate electrode layer of the second TFT are disposed in the same layer and include the same material.
    Type: Application
    Filed: August 31, 2023
    Publication date: March 7, 2024
    Inventors: Himchan OH, Jong-Heon YANG, Ji Hun CHOI, Seung Youl KANG, Yong Hae KIM, Jeho NA, Jaehyun MOON, Chan Woo PARK, Sung Haeng CHO, Jae-Eun PI, Chi-Sun HWANG
  • Patent number: 11725069
    Abstract: Provided is a method of producing polypropylene. More specifically, provided is a method of efficiently producing high-strength isotactic polypropylene having high crystallinity even with a shorter polymerization time. More specifically, provided is a method of producing polypropylene, including polymerizing propylene in the presence of a catalyst composition including a Ziegler-Natta catalyst, an external electron donor, dialkylaluminum hydride, and trialkylaluminum. The polypropylene has a xylene cold soluble content of 3 wt % or less.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: August 15, 2023
    Assignees: SK Innovation Co., Ltd., SK Geo Centric Co., Ltd.
    Inventors: Hyo Seung Park, Hyeong Min Kim, Sung Jae Na, Ji Hae Park, So Young Shim
  • Publication number: 20220119560
    Abstract: Provided is a method of producing polypropylene. More specifically, provided is a method of efficiently producing high-strength isotactic polypropylene having high crystallinity even with a shorter polymerization time. More specifically, provided is a method of producing polypropylene, including polymerizing propylene in the presence of a catalyst composition including a Ziegler-Natta catalyst, an external electron donor, dialkylaluminum hydride, and trialkylaluminum. The polypropylene has a xylene cold soluble content of 3 wt % or less.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 21, 2022
    Inventors: Hyo Seung Park, Hyeong Min Kim, Sung Jae Na, Ji Hae Park, So Young Shim
  • Patent number: 10961389
    Abstract: The prevent invention relates to a biodegradable polymer resin composition which can realize excellent mechanical properties together with biodegradability and has improved molding processability, and a molded article thereof. The biodegradable polymer resin composition may include a polycarbonate-polyester copolymer including a branched repeating unit containing a mediating functional group including a central element and five to ten alkylene or heteroalkylene functional groups bonded to the mediating functional group, an aliphatic polycarbonate repeating unit having a chain structure, and an aromatic polyester repeating unit, and a biodegradable polyester resin having a melt index (measured at 190° C., 2.16 kg) of 3 g/10 min to 20 g/10 min.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 30, 2021
    Assignee: LOTTE CHEMICAL CORPORATION
    Inventors: Ji Hae Park, Kwang Hyun Paek, Yong Taek Hwang
  • Patent number: 10793671
    Abstract: Provided is an aliphatic polycarbonate macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate macropolyol, the repeating units —OAO— and Z(O—)a are linked to each other via carbonyl (—C(O)—) linkers or are bonded to hydrogen to form terminal —OH groups. The number of moles of the terminal —OH groups is from aZ to aZ+0.2Z (where Z represents the number of moles of the repeating unit Z(O—)a). Further provided is an aliphatic polycarbonate-co-aromatic polyester macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate-co-aromatic polyester macropolyol, the repeating units —OAO— and Z(O—)a are linked via carbonyl (—C(O)—) and —C(O)YC(O)— as linkers or are bonded to hydrogen to form terminal —OH groups.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: October 6, 2020
    Assignee: LOTTE CHEMICAL CORPORATION
    Inventors: Bun Yeoul Lee, Jong Yeob Jeon, Ji Hae Park, Jung Jae Lee, Eun Yeong Hwang
  • Publication number: 20190233640
    Abstract: The prevent invention relates to a biodegradable polymer resin composition which can realize excellent mechanical properties together with biodegradability and has improved molding processability, and a molded article thereof. The biodegradable polymer resin composition may include a polycarbonate-polyester copolymer including a branched repeating unit containing a mediating functional group including a central element and five to ten alkylene or heteroalkylene functional groups bonded to the mediating functional group, an aliphatic polycarbonate repeating unit having a chain structure, and an aromatic polyester repeating unit, and a biodegradable polyester resin having a melt index (measured at 190° C., 2.16 kg) of 3 g/10 min to 20 g/10 min.
    Type: Application
    Filed: September 29, 2017
    Publication date: August 1, 2019
    Inventors: Ji Hae PARK, Kwang Hyun PAEK, Yong Taek HWANG
  • Publication number: 20180186929
    Abstract: Provided is an aliphatic polycarbonate macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate macropolyol, the repeating units —OAO— and Z(O—)a are linked to each other via carbonyl (—C(O)—) linkers or are bonded to hydrogen to form terminal —OH groups. The number of moles of the terminal —OH groups is from aZ to aZ+0.2 Z (where Z represents the number of moles of the repeating unit Z(O—)a). Further provided is an aliphatic polycarbonate-co-aromatic polyester macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate-co-aromatic polyester macropolyol, the repeating units —OAO— and Z(O—)a are linked via carbonyl (—C(O)—) and —C(O)YC(O)— as linkers or are bonded to hydrogen to form terminal —OH groups.
    Type: Application
    Filed: February 8, 2018
    Publication date: July 5, 2018
    Inventors: Bun Yeoul Lee, Jong Yeob Jeon, Ji Hae Park, Jung Jae Lee, Eun Yeong Hwang
  • Publication number: 20180179333
    Abstract: Provided is an aliphatic polycarbonate macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate macropolyol, the repeating units —OAO— and Z(O—)a are linked to each other via carbonyl (—C(O)—) linkers or are bonded to hydrogen to form terminal —OH groups. The number of moles of the terminal —OH groups is from aZ to aZ+0.2Z (where Z represents the number of moles of the repeating unit Z(O—)a). Further provided is an aliphatic polycarbonate-co-aromatic polyester macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate-co-aromatic polyester macropolyol, the repeating units —OAO— and Z(O—)a are linked via carbonyl (—C(O)—) and —C(O)YC(O)— as linkers or are bonded to hydrogen to form terminal —OH groups.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 28, 2018
    Inventors: Bun Yeoul Lee, Jong Yeob Jeon, Ji Hae Park, Jung Jae Lee, Eun Yeong Hwang
  • Patent number: 9475905
    Abstract: An aliphatic polycarbonate is disclosed in which a salt consisting of a metal or onium cation and an anion having a pKa not greater than 3 is dispersed. The aliphatic polycarbonate includes repeating units of Formula 1: [-A-OC(O)O-] (wherein A is a substituted or unsubstituted C3-C60 alkylene, or a substituted or unsubstituted C3-C60 heteroalkylene and the O-A-O units in one polymer chain may be identical to or different from each other).
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: October 25, 2016
    Assignee: LOTTE CHEMICAL CORPORATION
    Inventors: Bun Yeoul Lee, Ji Hae Park, Jong Yeob Jeon, Jung Jae Lee, Young Eun Jang
  • Patent number: 9447234
    Abstract: Provided is an aliphatic polycarbonate copolymer including repeating units of Formula 1 described in the specification. In Formula 1, A is a substituted or unsubstituted C3-C60 alkylene or a substituted or unsubstituted C3-C60 heteroalkylene and the O-A-O units in one polymer chain may be identical to or different from each other, B is a substituted or unsubstituted C5-C20 arylene or a substituted or unsubstituted C5-C20 heteroarylene and the —C(O)—B—C(O)— units in one polymer chain may be identical to or different from each other, and x and y are real numbers representing mole fractions.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: September 20, 2016
    Assignee: LOTTE CHEMICAL CORPORATION
    Inventors: Bun Yeoul Lee, Jong Yeob Jeon, Jung Jae Lee, Ji Hae Park
  • Publication number: 20160177027
    Abstract: Provided is an aliphatic polycarbonate macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate macropolyol, the repeating units —OAO— and Z(O—)a are linked to each other via carbonyl (—C(O)—) linkers or are bonded to hydrogen to form terminal —OH groups. The number of moles of the terminal —OH groups is from aZ to aZ+0.2Z (where Z represents the number of moles of the repeating unit Z(O—)a). Further provided is an aliphatic polycarbonate-co-aromatic polyester macropolyol including —OAO— and Z(O—)a as repeating units. In the aliphatic polycarbonate-co-aromatic polyester macropolyol, the repeating units —OAO— and Z(O—)a are linked via carbonyl (—C(O)—) and —C(O)YC(O)— as linkers or are bonded to hydrogen to form terminal —OH groups.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 23, 2016
    Inventors: Bun Yeoul LEE, Jong Yeob JEON, Ji Hae PARK, Jung Jae LEE, Eun Yeong HWANG
  • Publication number: 20150353678
    Abstract: An aliphatic polycarbonate is disclosed in which a salt consisting of a metal or onium cation and an anion having a pKa not greater than 3 is dispersed. The aliphatic polycarbonate includes repeating units of Formula 1: [-A-OC(O)O-] (wherein A is a substituted or unsubstituted C3-C60 alkylene, or a substituted or unsubstituted C3-C60 heteroalkylene and the O-A-O units in one polymer chain may be identical to or different from each other).
    Type: Application
    Filed: May 28, 2013
    Publication date: December 10, 2015
    Applicant: LOTTE CHEMICAL CORPORATION
    Inventors: Bun Yeoul LEE, Ji Hae PARK, Jong Yeob JEON, Jung Jae LEE, Young Eun JANG
  • Publication number: 20150291735
    Abstract: Provided is an aliphatic polycarbonate copolymer including repeating units of Formula 1 described in the specification. In Formula 1, A is a substituted or unsubstituted C3-C60 alkylene or a substituted or unsubstituted C3-C60 heteroalkylene and the O-A-O units in one polymer chain may be identical to or different from each other, B is a substituted or unsubstituted C5-C20 arylene or a substituted or unsubstituted C5-C20 heteroarylene and the —C(O)—B—C(O)— units in one polymer chain may be identical to or different from each other, and x and y are real numbers representing mole fractions.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 15, 2015
    Inventors: Bun Yeoul Lee, Jong Yeob Jeon, Jung Jae Lee, Ji Hae Park
  • Patent number: 9096575
    Abstract: The present invention relates to a novel ligand derived from a tetrahydroquinoline derivative, and a transition metal compound prepared using the ligand, where an amido ligand is linked to an ortho-phenylene ligand to form a condensed ring and a 5-membered cyclic pi-ligand linked to the ortho-phenylene ligand is fused with a heterocyclic thiophene ligand. Compared with the catalysts not fused with a heterocyclic thiophene ligand, the transition metal compound of the present invention as activated with a co-catalyst has higher catalytic activity in olefin polymerization and provides a polymer with higher molecular weight.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: August 4, 2015
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do
  • Patent number: 9062025
    Abstract: The present invention relates to a supported catalyst for olefin polymerization to which a novel transition metal compound and a co-catalyst compound are bound, and a preparation method for polyolefin using the supported catalyst. The transition metal compound bound to the catalyst of the present invention provides high activity for olefin-based monomers in heterogeneous reaction as well as in homogeneous system. Particularly, a polyolefin with higher molecular weight can be prepared by using the supported catalyst containing the transition metal compound bound to a support, rather than using the novel transition metal compound in a non-supported status, or the conventional transition metal compound in a supported or non-supported status.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 23, 2015
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Young-Kook Kim, Hwa-Kyu Kim, In-Sung Nam, Seung-Woong Yoon
  • Publication number: 20150011770
    Abstract: The present invention relates to a novel ligand derived from a tetrahydroquinoline derivative, and a transition metal compound prepared using the ligand, where an amido ligand is linked to an ortho-phenylene ligand to form a condensed ring and a 5-membered cyclic pi-ligand linked to the ortho-phenylene ligand is fused with a heterocyclic thiophene ligand. Compared with the catalysts not fused with a heterocyclic thiophene ligand, the transition metal compound of the present invention as activated with a co-catalyst has higher catalytic activity in olefin polymerization and provides a polymer with higher molecular weight.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do
  • Patent number: 8916662
    Abstract: The present invention relates to a preparation method for olefin-diene copolymer that comprises polymerizing at least one olefin-based monomer and at least one diene-based monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for olefin-diene copolymer according to the present invention can not only acquire high catalytic activity for copolymerization of the olefin and diene monomers to achieve high process efficiency but allow it to easily control the fine-structure characteristics of the copolymer, thereby providing an olefin-diene copolymer having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Patent number: 8912352
    Abstract: The present invention relates to a novel ligand derived from a tetrahydroquinoline derivative, and a transition metal compound prepared using the ligand, where an amido ligand is linked to an ortho-phenylene ligand to form a condensed ring and a 5-membered cyclic pi-ligand linked to the ortho-phenylene ligand is fused with a heterocyclic thiophene ligand. Compared with the catalysts not fused with a heterocyclic thiophene ligand, the transition metal compound of the present invention as activated with a co-catalyst has higher catalytic activity in olefin polymerization and provides a polymer with higher molecular weight.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 16, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do
  • Patent number: 8889804
    Abstract: The present invention relates to a preparation method for polypropylene that comprises polymerizing a propylene monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for polypropylene according to the present invention can not only acquire high catalytic activity for polymerization to achieve high efficiency of the process but allow it to easily control the fine-structure characteristics of the polymer, thereby providing polypropylene having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon