Patents by Inventor Ji Hae PARK

Ji Hae PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889581
    Abstract: The present invention relates to a catalyst composition comprising a novel transition metal compound and a preparation method for polyolefin using the same. The catalyst composition of the present invention has high catalytic activity for polymerization of olefin-based monomers and enables it to control the fine-structure characteristics of the polyolefin, such as molecular weight distribution, in a wide range, thereby easily providing a polyolefin with desired properties.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Young-Kook Kim, In-Sung Nam, Seung-Woong Yoon
  • Patent number: 8889804
    Abstract: The present invention relates to a preparation method for polypropylene that comprises polymerizing a propylene monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for polypropylene according to the present invention can not only acquire high catalytic activity for polymerization to achieve high efficiency of the process but allow it to easily control the fine-structure characteristics of the polymer, thereby providing polypropylene having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Patent number: 8741251
    Abstract: Disclosed are granular mesoporous silica and a preparation method thereof. The preparation method includes preparing powdered silica containing a structure derivative to form mesopores; preparing a molded precursor including the powdered silica and an inorganic binder or an organic binder; preparing a granular molded article having a predetermined shape by extruding or injection-molding the molded precursor; and removing the structure derivative by calcinating the granular molded article. The granular mesoporous silica represents superior pore characteristics and is used as an adsorbent capable of effectively removing pollutants in water treatment and air pollution treatment.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: June 3, 2014
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Heechul Choi, Yo Han Kim, Jiyeol Bae, Ji Hae Park, Jeong Kwon Suh
  • Publication number: 20130211021
    Abstract: The present invention relates to a preparation method for polypropylene that comprises polymerizing a propylene monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for polypropylene according to the present invention can not only acquire high catalytic activity for polymerization to achieve high efficiency of the process but allow it to easily control the fine-structure characteristics of the polymer, thereby providing polypropylene having desired properties with ease.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 15, 2013
    Applicant: LOTTE CHEMICAL CORPORATION
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Publication number: 20130211020
    Abstract: The present invention relates to a catalyst composition comprising a novel transition metal compound and a preparation method for polyolefin using the same. The catalyst composition of the present invention has high catalytic activity for polymerization of olefin-based monomers and enables it to control the fine-structure characteristics of the polyolefin, such as molecular weight distribution, in a wide range, thereby easily providing a polyolefin with desired properties.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 15, 2013
    Applicant: LOTTE CHEMICAL CORPORATION
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Young-Kook Kim, In-Sung Nam, Seung-Woong Yoon
  • Publication number: 20130211024
    Abstract: The present invention relates to a preparation method for olefin-diene copolymer that comprises polymerizing at least one olefin-based monomer and at least one diene-based monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for olefin-diene copolymer according to the present invention can not only acquire high catalytic activity for copolymerization of the olefin and diene monomers to achieve high process efficiency but allow it to easily control the fine-structure characteristics of the copolymer, thereby providing an olefin-diene copolymer having desired properties with ease.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 15, 2013
    Applicant: HONAM PETROCHEMICAL CORPORATION
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Publication number: 20130203949
    Abstract: The present invention relates to a novel ligand derived from a tetrahydroquinoline derivative, and a transition metal compound prepared using the ligand, where an amido ligand is linked to an ortho-phenylene ligand to form a condensed ring and a 5-membered cyclic pi-ligand linked to the ortho-phenylene ligand is fused with a heterocyclic thiophene ligand. Compared with the catalysts not fused with a heterocyclic thiophene ligand, the transition metal compound of the present invention as activated with a co-catalyst has higher catalytic activity in olefin polymerization and provides a polymer with higher molecular weight.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 8, 2013
    Applicant: OTTE CHEMICAL CORPORATION
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do
  • Patent number: 8455393
    Abstract: Disclosed is a preparation method for a granular carbon mesoporous structure. The preparation method includes the steps of preparing a powdered composite of silica-carbon precursor-pore forming agent by using a mixture including a silica precursor, a carbon precursor and a pore forming agent, preparing a molded precursor by mixing the composite with an organic additive, preparing a granular molded article by extruding or injection-molding the molded precursor, calcinating the molded article, and etching silica included in the calcinated molded article.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: June 4, 2013
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Heechul Choi, Yo Han Kim, Ji Hae Park, Jiyeol Bae, Hosik Park
  • Publication number: 20130095025
    Abstract: Disclosed are granular mesoporous silica and a preparation method thereof. The preparation method includes preparing powdered silica containing a structure derivative to form mesopores; preparing a molded precursor including the powdered silica and an inorganic binder or an organic binder; preparing a granular molded article having a predetermined shape by extruding or injection-molding the molded precursor; and removing the structure derivative by calcinating the granular molded article. The granular mesoporous silica represents superior pore characteristics and is used as an adsorbent capable of effectively removing pollutants in water treatment and air pollution treatment.
    Type: Application
    Filed: December 14, 2011
    Publication date: April 18, 2013
    Applicant: Gwangju Institute of Science and Technology
    Inventors: Heechul CHOI, Yo Han KIM, Jiyeol BAE, Ji Hae PARK, Jeong Kwon SUH
  • Publication number: 20130096001
    Abstract: Disclosed is a preparation method for a granular carbon mesoporous structure. The preparation method includes the steps of preparing a powdered composite of silica-carbon precursor-pore forming agent by using a mixture including a silica precursor, a carbon precursor and a pore forming agent, preparing a molded precursor by mixing the composite with an organic additive, preparing a granular molded article by extruding or injection-molding the molded precursor, calcinating the molded article, and etching silica included in the calcinated molded article.
    Type: Application
    Filed: December 14, 2011
    Publication date: April 18, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Heechul CHOI, Yo Han KIM, Ji Hae PARK, Jiyeol BAE, Hosik PARK