Patents by Inventor Ji Ung Lee

Ji Ung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020098630
    Abstract: The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device includes a transistor configured to control the emission of electrons from an emitter.
    Type: Application
    Filed: February 5, 2002
    Publication date: July 25, 2002
    Inventors: Ji Ung Lee, John Lee, Benham Moradi
  • Publication number: 20020093278
    Abstract: A method of forming an extraction grid for field emitter tip structures is described. A conductive layer is deposited over an insulative layer formed over the field emitter tip structures. The conductive layer is milled using ion milling. Owing to topographical differences along an exposed surface of the conductive layer, ions strike the exposed surface at various angles of incidence. As etch rate from ion milling is dependent at least in part upon angle of incidence, a selectivity based on varying topography of the exposed surface (“topographic selectivity”) results in non-uniform removal of material thereof. In particular, portions of the conductive layer in near proximity to the field emitter tip structures are removed faster than portions of the conductive layer between emitter tip structures. Thus, portions of the insulative layer in near proximity to the field emitter tip structures may be exposed while leaving intervening portions of the conductive layer for forming the extraction grid.
    Type: Application
    Filed: February 8, 2002
    Publication date: July 18, 2002
    Applicant: Micron Technology, Inc.
    Inventors: David H. Wells, Ji Ung Lee, Aaron R. Wilson
  • Publication number: 20020063513
    Abstract: The present invention includes field emission display backplates and methods of forming field emission display backplates. According to one aspect, the present invention provides a field emission display backplate including a substrate having a surface; an emitter which extends from the surface of the substrate; and an anode having an upper surface, a lower surface, and an opening surface which defines an opening aligned with the emitter, the opening surface includes a first portion which curves outward relative to the anode and a second portion which curves inward relative to the anode.
    Type: Application
    Filed: February 3, 1999
    Publication date: May 30, 2002
    Inventor: JI UNG LEE
  • Patent number: 6394871
    Abstract: An improved structure and method are provided to decouple the gate dielectric thickness and the emitter tip to gate layer distance by etching the dielectric using ion bombardment. The ion bombardment, or ion etch, is performed prior to depositing the gate layer. The improved structure and method will allow a smaller distance between the emitter tip and the gate structure without having to decrease the thickness of the gate insulator layer. The smaller emitter tip to gate distance lowers the turn-on voltage which is highly desirable in such areas as beam optics and power dissipation.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Ji Ung Lee
  • Patent number: 6391670
    Abstract: A method of forming an extraction grid for field emitter tip structures is described. A conductive layer is deposited over an insulative layer formed over the field emitter tip structures. The conductive layer is milled using ion milling. Owing to topographical differences along an exposed surface of the conductive layer, ions strike the exposed surface at various angles of incidence. As etch rate from ion milling is dependent at least in part upon angle of incidence, a selectivity based on varying topography of the exposed surface (“topographic selectivity”) results in non-uniform removal of material thereof. In particular, portions of the conductive layer in near proximity to the field emitter tip structures are removed faster than portions of the conductive layer between emitter tip structures. Thus, portions of the insulative layer in near proximity to the field emitter tip structures may be exposed while leaving intervening portions of the conductive layer for forming the extraction grid.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: May 21, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Ji Ung Lee, Aaron R. Wilson
  • Publication number: 20020021069
    Abstract: The present invention includes field emission display backplates and methods of forming field emission display backplates. According to one aspect, the present invention provides a field emission display backplate including a substrate having a surface; an emitter which extends from the surface of the substrate; and an anode having an upper surface, a lower surface, and an opening surface which defines an opening aligned with the emitter, the opening surface includes a first portion which curves outward relative to the anode and a second portion which curves inward relative to the anode.
    Type: Application
    Filed: April 20, 2001
    Publication date: February 21, 2002
    Inventor: Ji Ung Lee
  • Patent number: 6344378
    Abstract: The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device includes a transistor configured to control the emission of electrons from an emitter.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: February 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Ji Ung Lee, John Lee, Benham Moradi
  • Publication number: 20020003400
    Abstract: An improved structure and method are provided to decouple the gate dielectric thickness and the emitter tip to gate layer distance by etching the dielectric using ion bombardment. The ion bombardment, or ion etch, is performed prior to depositing the gate layer. The improved structure and method will allow a smaller distance between the emitter tip and the gate structure without having to decrease the thickness of the gate insulator layer. The smaller emitter tip to gate distance lowers the turn-on voltage which is highly desirable in such areas as beam optics and power dissipation.
    Type: Application
    Filed: August 30, 2001
    Publication date: January 10, 2002
    Applicant: Micron Technology, Inc.
    Inventor: Ji Ung Lee
  • Publication number: 20010020813
    Abstract: An improved structure and method are provided to decouple the gate dielectric thickness and the emitter tip to gate layer distance by etching the dielectric using ion bombardment. The ion bombardment, or ion etch, is performed prior to depositing the gate layer. The improved structure and method will allow a smaller distance between the emitter tip and the gate structure without having to decrease the thickness of the gate insulator layer. The smaller emitter tip to gate distance lowers the turn-on voltage which is highly desirable in such areas as beam optics and power dissipation.
    Type: Application
    Filed: September 2, 1998
    Publication date: September 13, 2001
    Inventor: JI UNG LEE