Patents by Inventor Jia-Hung Tseng

Jia-Hung Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136472
    Abstract: A semiconductor light-emitting device includes a semiconductor stack including a first semiconductor layer and a second semiconductor layer; a first reflective layer formed on the first semiconductor layer and including a plurality of vias; a plurality of contact structures respectively filled in the vias and electrically connected to the first semiconductor layer; a second reflective layer including metal material formed on the first reflective layer and contacting the contact structures; a plurality of conductive vias surrounded by the semiconductor stack; a connecting layer formed in the conductive vias and electrically connected to the second semiconductor layer; a first pad portion electrically connected to the second semiconductor layer; and a second pad portion electrically connected to the first semiconductor layer, wherein a shortest distance between two of the conductive vias is larger than a shortest distance between the first pad portion and the second pad portion.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Inventors: Chao-Hsing CHEN, Jia-Kuen WANG, Tzu-Yao TSENG, Tsung-Hsun CHIANG, Bo-Jiun HU, Wen-Hung CHUANG, Yu-Ling LIN
  • Patent number: 10886153
    Abstract: Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Peter L. Chang, Chytra Pawashe, Michael C. Mayberry, Jia-Hung Tseng
  • Publication number: 20190148188
    Abstract: Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 16, 2019
    Applicant: Intel Corporation
    Inventors: Peter L. Chang, Chytra Pawashe, Michael C. Mayberry, Jia-Hung Tseng
  • Patent number: 10242892
    Abstract: Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and-bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Intel Corporation
    Inventors: Peter L. Chang, Chytra Pawashe, Michael C. Mayberry, Jia-Hung Tseng
  • Patent number: 10204808
    Abstract: Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and-bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Peter L. Chang, Chytra Pawashe, Michael C. Mayberry, Jia-Hung Tseng
  • Publication number: 20170278733
    Abstract: Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and-bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 28, 2017
    Inventors: Peter L. Chang, Chytra Pawashe, Michael C. Mayberry, Jia-Hung Tseng
  • Patent number: 9420700
    Abstract: An optical touchscreen assembly may employ a photonic chip packaged with a chip surface at an angle inclined between horizontal and vertical orientations. An inclined paddle sawn flat no-leads (IPSFN) package may be affixed to a cover glass surface along a perimeter of a display. IPSFN packages may incorporate a photo-emitter chip and a photo-detector chip that may be inclined for a desired angle of incidence relative to the cover glass. A CMOS integrated optical transceiver package may include inclined photonic chips and a non-inclined CMOS chip having at least one of a photo-emitter driver, or a photo-detector TIA and/or ADC. A chip package lead frame may include cantilevered paddle tabs amenable to controlled deflection during package assembly. An inclined packaging assembly method may include attaching a chip to a lead frame paddle and form pressing the lead frame to incline the chip to a desired angle before encapsulation.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: August 16, 2016
    Assignee: Intel Corporation
    Inventors: Gerrit J Vreman, Tom E Pearson, Peter L Chang, Jia-Hung Tseng
  • Patent number: 9377594
    Abstract: An optical connector includes a two-dimensional array of lenses to couple optical signals between an optical integrated circuit and an optical fiber. The optical connector has a total-internal-reflection or mirror surface that redirects light between lenses at different surfaces of the optical connector. The lens arrays collimate light directed toward the reflection surface and focuses light received from the reflection surface. The two-dimensional array and prism allows for a low-profile, high-density optical connector based on free space optical light propagation.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 28, 2016
    Assignee: Intel Corporation
    Inventors: Shawna Liff, Jia-Hung Tseng, Peter Chang
  • Publication number: 20160088740
    Abstract: An optical touchscreen assembly may employ a photonic chip packaged with a chip surface at an angle inclined between horizontal and vertical orientations. An inclined paddle sawn flat no-leads (IPSFN) package may be affixed to a cover glass surface along a perimeter of a display. IPSFN packages may incorporate a photo-emitter chip and a photo-detector chip that may be inclined for a desired angle of incidence relative to the cover glass. A CMOS integrated optical transceiver package may include inclined photonic chips and a non-inclined CMOS chip having at least one of a photo-emitter driver, or a photo-detector TIA and/or ADC. A chip package lead frame may include cantilevered paddle tabs amenable to controlled deflection during package assembly. An inclined packaging assembly method may include attaching a chip to a lead frame paddle and form pressing the lead frame to incline the chip to a desired angle before encapsulation.
    Type: Application
    Filed: October 13, 2015
    Publication date: March 24, 2016
    Inventors: Gerrit J. VREMAN, Tom E. PEARSON, Peter L. CHANG, Jia-Hung TSENG
  • Patent number: 9263621
    Abstract: An optical touchscreen assembly may employ a photonic chip packaged with a chip surface at an angle inclined between horizontal and vertical orientations. An inclined paddle sawn flat no-leads (IPSFN) package may be affixed to a cover glass surface along a perimeter of a display. IPSFN packages may incorporate a photo-emitter chip and a photo-detector chip that may be inclined for a desired angle of incidence relative to the cover glass. A CMOS integrated optical transceiver package may include inclined photonic chips and a non-inclined CMOS chip having at least one of a photo-emitter driver, or a photo-detector TIA and/or ADC. A chip package lead frame may include cantilevered paddle tabs amenable to controlled deflection during package assembly. An inclined packaging assembly method may include attaching a chip to a lead frame paddle and form pressing the lead frame to incline the chip to a desired angle before encapsulation.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: February 16, 2016
    Assignee: Intel Corporation
    Inventors: Gerrit J Vreman, Tom E Pearson, Peter L Chang, Jia-Hung Tseng
  • Publication number: 20150185895
    Abstract: An optical touchscreen assembly may employ a photonic chip packaged with a chip surface at an angle inclined between horizontal and vertical orientations. An inclined paddle sawn flat no-leads (IPSFN) package may be affixed to a cover glass surface along a perimeter of a display. IPSFN packages may incorporate a photo-emitter chip and a photo-detector chip that may be inclined for a desired angle of incidence relative to the cover glass. A CMOS integrated optical transceiver package may include inclined photonic chips and a non-inclined CMOS chip having at least one of a photo-emitter driver, or a photo-detector TIA and/or ADC. A chip package lead frame may include cantilevered paddle tabs amenable to controlled deflection during package assembly. An inclined packaging assembly method may include attaching a chip to a lead frame paddle and form pressing the lead frame to incline the chip to a desired angle before encapsulation.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Inventors: Gerrit J VREMAN, Tom E PEARSON, Peter L CHANG, Jia-Hung TSENG
  • Patent number: 9025926
    Abstract: Embodiments of the present disclosure describe techniques and configurations for decreasing optical loss in a waveguide of a modulator device. In one embodiment, an apparatus includes a substrate, and a waveguide of a modulator device formed on the substrate, the waveguide having a first portion that is configured to receive light for propagation along the waveguide, a second portion that includes two slots formed in the waveguide that merge into a single slot, the second portion being coupled with the first portion, a third portion that includes the single slot formed in the waveguide, the third portion being coupled with the second portion, a fourth portion that includes another two slots formed in the waveguide, the another two slots branching from the single slot, the fourth portion being coupled with the third portion, and a fifth portion that is configured to output the propagated light, the fifth portion being coupled with the fourth portion. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 5, 2015
    Assignee: Intel Corporation
    Inventors: Peter L. Chang, Jia-Hung Tseng
  • Publication number: 20140199015
    Abstract: Embodiments of the present disclosure describe techniques and configurations for decreasing optical loss in a wave-guide of a modulator device. In one embodiment, an apparatus includes a substrate, and a waveguide of a modulator device formed on the substrate, the waveguide having a first portion that is configured to receive light for propagation along the waveguide, a second portion that includes two slots formed in the waveguide that merge into a single slot, the second portion being coupled with the first portion, a third portion that includes the single slot formed in the waveguide, the third portion being coupled with the second portion, a fourth portion that includes another two slots formed in the waveguide, the another two slots branching from the single slot, the fourth portion being coupled with the third portion, and a fifth portion that is configured to output the propagated light, the fifth portion being coupled with the fourth portion. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 17, 2014
    Inventors: Peter L. Chang, Jia-Hung Tseng
  • Publication number: 20140153881
    Abstract: An optical connector includes a two-dimensional array of lenses to couple optical signals between an optical integrated circuit and an optical fiber. The optical connector has a total-internal-reflection or mirror surface that redirects light between lenses at different surfaces of the optical connector. The lens arrays collimate light directed toward the reflection surface and focuses light received from the reflection surface. The two-dimensional array and prism allows for a low-profile, high-density optical connector based on free space optical light propagation.
    Type: Application
    Filed: December 29, 2011
    Publication date: June 5, 2014
    Inventors: Shawna Liff, Jia-Hung Tseng, Peter Chang
  • Patent number: 8731346
    Abstract: Embodiments of the present disclosure provide optical connection techniques and configurations. In one embodiment, an apparatus includes a substrate, a laser device formed on the substrate, the laser device including an active layer configured to emit light, and a mode-expander waveguide disposed on the substrate and butt-coupled with the active layer to receive and route the light to a waveguide formed on another substrate. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Intel Corporation
    Inventors: Jia-Hung Tseng, Peter L. Chang, Miriam R. Reshotko, Ibrahim Ban, Mauro J. Kobrinsky, Brian Corbett, Roberto Pagano
  • Publication number: 20140003765
    Abstract: Embodiments of the present disclosure provide optical connection techniques and configurations. In one embodiment, an apparatus includes a substrate, a laser device formed on the substrate, the laser device including an active layer configured to emit light, and a mode-expander waveguide disposed on the substrate and butt-coupled with the active layer to receive and route the light to a waveguide formed on another substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventors: Jia-Hung Tseng, Peter L. Chang, Miriam R. Reshotko, Ibrahim Ban, Mauro J. Kobrinsky, Brian Corbett, Roberto Pagano
  • Publication number: 20130336346
    Abstract: Embodiments of the present disclosure provide optical connection techniques and configurations. In one embodiment, an opto-electronic assembly includes a first semiconductor die including a light source to generate light, and a first mode expander structure comprising a first optical material disposed on a surface of the first semiconductor die, the first optical material being optically transparent at a wavelength of the light, and a second semiconductor die including a second mode expander structure comprising a second optical material disposed on a surface of the second semiconductor die, the second material being optically transparent at the wavelength of the light, wherein the second optical material is evanescently coupled with the first optical material to receive the light from the first optical material. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 5, 2012
    Publication date: December 19, 2013
    Inventors: Mauro J. Kobrinsky, Jia-Hung Tseng, Bruce A. Block