Patents by Inventor Jia Ni

Jia Ni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11594614
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Mao-Lin Huang
  • Publication number: 20230029370
    Abstract: A method for processing an integrated circuit includes forming N-type and P-type gate all around transistors and core gate all around transistors. The method deposits a metal gate layer for the P-type transistors. The method forms a passivation layer in-situ with the metal gate layer of the P-type transistor.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 26, 2023
    Inventors: Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Jia-Ni YU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 11563109
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The gate structure includes a first layer, and a fill layer over the first layer. The gate structure includes a protection layer formed over the fill layer of the gate structure, and the protection layer is separated from the first layer by the fill layer.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11557660
    Abstract: A mask layer is formed over a semiconductor device. The semiconductor device includes: a gate structure, a first layer disposed over the gate structure, and an interlayer dielectric (ILD) disposed on sidewalls of the first layer. The mask layer includes an opening that exposes a portion of the first layer and a portion of the ILD. A first etching process is performed to etch the opening partially into the first layer and partially into the ILD. A liner layer is formed in the opening after the first etching process has been performed. A second etching process is performed after the liner layer has been formed. The second etching process extends the opening downwardly through the first layer and through the gate structure. The opening is filled with a second layer after the second etching process has been performed.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Chang Lin, Wei-Hao Wu, Jia-Ni Yu, Huan-Chieh Su, Ting-Hung Hsu, Chih-Hao Wang
  • Publication number: 20230010502
    Abstract: A method for processing an integrated circuit includes forming first and second gate all around transistors. The method forms a dipole oxide in the first gate all around transistor without forming the dipole oxide in the second gate all around transistor. This is accomplished by entirely removing an interfacial dielectric layer and a dipole-inducing layer from semiconductor nanosheets of the second gate all around transistor before redepositing the interfacial dielectric layer on the semiconductor nanosheets of the second gate all around transistor.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Inventors: Lung-Kun CHU, Mao-Lin HUANG, Chung-Wei HSU, Jia-Ni YU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20230009349
    Abstract: A method for processing an integrated circuit includes forming I/O gate all around transistors and core gate all around transistors. The method performs a regrowth process on an interfacial gate dielectric layer of the I/O gate all around transistors by diffusing metal atoms into the interfacial dielectric layer I/O gate all around transistor. The regrowth process does not diffuse metal atoms into the interfacial gate dielectric layer of the gate all around core transistor.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chih-Hao WANG, Kuan-Lun CHENG
  • Patent number: 11521858
    Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor includes: a first source and a first drain separated by a first distance, a first semiconductor structure disposed between the first source and first drain, a first gate electrode disposed over the first semiconductor structure, and a first dielectric structure disposed over the first gate electrode. The first dielectric structure has a lower portion and an upper portion disposed over the lower portion and wider than the lower portion. The second transistor includes: a second source and a second drain separated by a second distance greater than the first distance, a second semiconductor structure disposed between the second source and second drain, a second gate electrode disposed over the second semiconductor structure, and a second dielectric structure disposed over the second gate electrode. The second dielectric structure and the first dielectric structure have different material compositions.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huan-Chieh Su, Zhi-Chang Lin, Ting-Hung Hsu, Jia-Ni Yu, Wei-Hao Wu, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20220384434
    Abstract: A semiconductor device structure is provided. The device includes one or more first semiconductor layers, each first semiconductor layer of the one or more first semiconductor layers is surrounded by a first intermixed layer, wherein the first intermixed layer comprises a first material and a second material.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Jia-Ni YU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20220375936
    Abstract: A semiconductor device includes first and second n-type transistors and first and second p-type transistors. The first n-type transistor includes a first channel layer and a first portion of a high-k dielectric layer over the first channel layer. The second n-type transistor includes a second channel layer and a second portion of the high-k dielectric layer over the second channel layer, wherein the second portion includes a higher amount of an n-type dipole material than the first portion. The first p-type transistor includes a third channel layer and a third portion of the high-k dielectric layer over the third channel layer. The second p-type transistor includes a fourth channel layer and a fourth portion of the high-k dielectric layer over the fourth channel layer, wherein the fourth portion includes a higher amount of a p-type dipole material than the third portion.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 24, 2022
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20220367689
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate, the fin having a plurality of semiconductor layers and a first distance between each adjacent semiconductor layers. The method further includes providing a dielectric fin extending from the substrate where the dielectric fin is adjacent to the plurality of semiconductor layers and there is a second distance between an end of each of the semiconductor layers and a first sidewall of the dielectric fin. The second distance is greater than the first distance. Depositing a dielectric layer over the semiconductor layers and over the first sidewall of the dielectric fin. Forming a first metal layer over the dielectric layer on the semiconductor layers and on the first sidewall of the dielectric fin, wherein portions of the first metal layer disposed on and interposing adjacent semiconductor layers are merged together. Finally removing the first metal layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20220367291
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary method comprises forming a first stack structure and a second stack structure in a first area over a substrate, wherein each of the stack structures includes semiconductor layers separated and stacked up; depositing a first interfacial layer around each of the semiconductor layers of the stack structures; depositing a gate dielectric layer around the first interfacial layer; forming a dipole oxide layer around the gate dielectric layer; removing the dipole oxide layer around the gate dielectric layer of the second stack structure; performing an annealing process to form a dipole gate dielectric layer for the first stack structure and a non-dipole gate dielectric layer for the second stack structure; and depositing a first gate electrode around the dipole gate dielectric layer of the first stack structure and the non-dipole gate dielectric layer of the second stack structure.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Hou-Yu Chen, Ching-Wei Tsai, Chih-Hao Wang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu
  • Patent number: 11502168
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first nanosheet field effect transistor (NSFET). The first NSFET includes a first nanosheet channel structure arranged over a substrate, a second nanosheet channel structure arranged directly over the first nanosheet channel structure, and a first gate electrode structure. The first and second nanosheet channel structures extend in parallel between first and second source/drain regions. The first gate electrode structure includes a first conductive ring and a second conductive ring that completely surround outer sidewalls of the first nanosheet channel structure and the second nanosheet channel structure, respectively, and that comprise a first material.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Wei Hsu, Hou-Yu Chen, Chih-Hao Wang, Ching-Wei Tsai, Kuo-Cheng Chiang, Kuan-Lun Cheng, Mao-Lin Huang, Jia-Ni Yu, Lung-Kun Chu
  • Publication number: 20220359725
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Mao-Lin Huang
  • Publication number: 20220359513
    Abstract: A semiconductor structure includes a first FET device, a second FET device disposed, and an isolation separating the first FET device and the second FET device. The first FET device includes a fin structure, a first work function metal layer disposed over the fin structure, and a high-k gate dielectric layer between the first work function metal layer and the fin structure. The second FET device includes a plurality of nanosheets separated from each other, a second work function metal layer surrounding each of the nanosheets, and the high-k gate dielectric layer between the second work function metal layer and each of the nanosheets. A portion of the high-k gate dielectric layer is directly over the isolation.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: JIA-NI YU, KUO-CHENG CHIANG, LUNG-KUN CHU, CHUNG-WEI HSU, CHIH-HAO WANG, MAO-LIN HUANG
  • Publication number: 20220352314
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first nanosheet field effect transistor (NSFET). The first NSFET includes a first nanosheet channel structure arranged over a substrate, a second nanosheet channel structure arranged directly over the first nanosheet channel structure, and a first gate electrode structure. The first and second nanosheet channel structures extend in parallel between first and second source/drain regions. The first gate electrode structure includes a first conductive ring and a second conductive ring that completely surround outer sidewalls of the first nanosheet channel structure and the second nanosheet channel structure, respectively, and that comprise a first material.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 3, 2022
    Inventors: Chung-Wei Hsu, Hou-Yu Chen, Chih-Hao Wang, Ching-Wei Tsai, Kuo-Cheng Chiang, Kuan-Lun Cheng, Mao-Lin Huang, Jia-Ni Yu, Lung-Kun Chu
  • Publication number: 20220336632
    Abstract: A device includes a substrate, channel layers over the substrate, a gate dielectric layer around the channel layers, a first work function metal layer around the gate dielectric layer, a second work function metal layer over the first work function metal layer, and a passivation layer between the first work function metal layer and the second work function metal layer. The passivation layer merges in space vertically between adjacent ones of the channel layers.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20220328652
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor layers and second semiconductor layers over a substrate, wherein the first semiconductor layers and the second semiconductor layers are separated and stacked up, and a thickness of each second semiconductor layer is less than a thickness of each first semiconductor layer; a first interfacial layer around each first semiconductor layer; a second interfacial layer around each second semiconductor layer; a first dipole gate dielectric layer around each first semiconductor layer and over the first interfacial layer; a second dipole gate dielectric layer around each second semiconductor layer and over the second interfacial layer; a first gate electrode around each first semiconductor layer and over the first dipole gate dielectric layer; and a second gate electrode around each second semiconductor layer and over the second dipole gate dielectric layer.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu, Chih-Hao Wang
  • Publication number: 20220320090
    Abstract: A semiconductor device is provided. The semiconductor device includes first channel nanostructures in a first device region and second channel nanostructures in a second device region. The first channel nanostructures are disposed between first and second dielectric fins. The second channel nanostructures are disposed between first and third dielectric fins. A gate dielectric layer is formed to surround each of the first and the second channel nanostructures and over the first, the second and the third dielectric fins. A first work function layer is formed to surround each of the first channel nanostructures. A second work function layer is formed to surround each of the second channel nanostructures. A first gap is present between every adjacent first channel nanostructures and a second gap present is between every adjacent second channel nanostructures.
    Type: Application
    Filed: September 15, 2021
    Publication date: October 6, 2022
    Inventors: Chung-Wei HSU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Jia-Ni YU, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20220320089
    Abstract: A semiconductor device is provided. The semiconductor device includes first channel nanostructures in a first device region, second channel nanostructures in a second device region, a dielectric fin at a boundary between the first device region and the second device region, a high-k dielectric layer surrounding each of the first channel nanostructures and each of the second channel nanostructures and over the dielectric fin, a first work function layer surrounding each of the first channel nanostructures and over the high-k dielectric layer and a second work function layer surrounding each of the second channel nanostructures and over the high-k dielectric layer and the first work function layer. The first work functional layer fully fills spaces between the first channel nanostructures and has an edge located above the dielectric fin. The second work functional layer fully fills spaces between the second channel nanostructures.
    Type: Application
    Filed: September 15, 2021
    Publication date: October 6, 2022
    Inventors: Lung-Kun CHU, Mao-Lin HUANG, Chung-Wei HSU, Jia-Ni YU, Chun-Fu LU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20220320342
    Abstract: A semiconductor device structure is provided. The device includes one or more first semiconductor layers, and a dipole layer surrounding each first semiconductor layer of the one or more first semiconductor layers, wherein the dipole layer comprises germanium. The structure also includes a capping layer surrounding and in contact with the dipole layer, wherein the capping layer comprises silicon, one or more second semiconductor layers disposed adjacent the one or more first semiconductor layers.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng CHIANG, Mao-Lin Huang, LUNG-KUN CHU, Jia-Ni Yu, KUAN-LUN CHENG, CHIH-HAO WANG