Patents by Inventor Jian J. Chen

Jian J. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115577
    Abstract: The present disclosure relates to compounds. and to their pharmaceutical compositions. that inhibit dipeptidyl peptidase IV (DPP4). Hie compounds selectively promote the proliferation of alveolar type 2 cells (AEC2s) and are useful in therapeutic methods of treating diseases whose etiology. for example. derives from epithelial degeneration and maladaptive remodeling, such as pulmonary' diseases like idiopathic pulmonary fibrosis (IFF), acute respiratory' distress syndrome (ARDS), and infant respiratory' distress syndromes (IRDS).
    Type: Application
    Filed: January 14, 2022
    Publication date: April 11, 2024
    Inventors: Michael J. Bollong, Peter G. Schultz, Sida Shao, Arnab Chatterjee, Jian Jeffrey Chen, Nan Zhang
  • Publication number: 20240109164
    Abstract: A polishing system includes a pressure system, a substrate carrier including a membrane, a first sensor, and a control system. A first compartment of the membrane is fluidly coupled to the pressure system. The first sensor is configured to monitor the pressure system and produce a first output based on conditions detected in the pressure system. The control system coupled to the first sensor and configured to process the first output to produce a first processed output, and the control system configured to compare the first processed output to a threshold to detect a presence of a fluid in the pressure system.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 4, 2024
    Inventors: Chang ZHANG, Jian J. CHEN, Quoc TRUONG, Jamie Stuart LEIGHTON
  • Patent number: 11898249
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward W. Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20230193466
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward W. BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 11613812
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 10910227
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan, Mohamad A. Ayoub, Jian J. Chen
  • Patent number: 10889581
    Abstract: The present disclosure provides a new class of compounds useful for the modulation of beta-secretase enzyme (BACE) activity. The compounds have a general Formula I: wherein variables A, R1, R2, R2?, R3, R4, and R5 of Formula I are defined herein. This disclosure also provides pharmaceutical compositions comprising the compounds, and uses of the compounds and compositions for treatment of disorders and/or conditions related to A? plaque formation and deposition, resulting from the biological activity of BACE. Such BACE mediated disorders include, for example, Alzheimer's Disease, cognitive deficits, cognitive impairments, and other central nervous system conditions.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: January 12, 2021
    Assignee: Amgen Inc.
    Inventors: Jennifer R. Allen, Albert Amegadzie, Matthew P. Bourbeau, Jian J. Chen, Michael J. Frohn, Paul E. Harrington, Jonathan D. Low, Vu V. Ma, Thomas T. Nguyen, Alexander Pickrell, Corey Reeves
  • Publication number: 20200399756
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 10793954
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20200231585
    Abstract: The present disclosure provides a new class of compounds useful for the modulation of beta-secretase enzyme (BACE) activity. The compounds have a general Formula (I) wherein variables A, R1, R2, R2?, R3, R4, and R5 of Formula (I) are defined herein. This disclosure also provides pharmaceutical compositions comprising the compounds, and uses of the compounds and compositions for treatment of disorders and/or conditions related to A? plaque formation and deposition, resulting from the biological activity of BACE. Such BACE mediated disorders include, for example, Alzheimer's Disease, cognitive deficits, cognitive impairments, and other central nervous system conditions.
    Type: Application
    Filed: December 13, 2017
    Publication date: July 23, 2020
    Applicant: AMGEN INC.
    Inventors: Jennifer R. ALLEN, Albert AMEGADZIE, Matthew P. BOURBEAU, Jian J. CHEN, Michael J. FROHN, Paul E. HARRINGTON, Jonathan D. LOW, Vu V. MA, Thomas T. NGUYEN, Alexander PICKRELL, Corey REEVES
  • Patent number: 10580626
    Abstract: Embodiments described herein generally relate to a plasma processing chamber and a detection apparatus for arcing events. In one embodiment, an arcing detection apparatus is disclosed herein. The arcing detection apparatus comprises a probe, a detection circuit, and a data log system. The probe positioned partially exposed to an interior volume of a plasma processing chamber. The detection circuit is configured to receive an analog signal from the probe and output an output signal scaling events present in the analog signal. The data log system is communicatively coupled to receive the output signal from the detection circuit. The data log system is configured to track arcing events occurring in the interior volume.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lin Zhang, Rongping Wang, Jian J. Chen, Michael S. Cox, Andrew V. Le
  • Publication number: 20200010957
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Jian J. CHEN, Mohamad A. AYOUB, Juan Carlos ROCHA-ALVAREZ, Zheng John YE, Ramprakash SANKARAKRISHNAN, Jianhua ZHOU
  • Publication number: 20190355609
    Abstract: Techniques are disclosed for methods and apparatuses for increasing the breakdown voltage while substantially reducing the voltage leakage of an electrostatic chuck at temperatures exceeding about 300 degrees Celsius in a processing chamber.
    Type: Application
    Filed: June 13, 2019
    Publication date: November 21, 2019
    Inventors: Prashant KULSHRESHTHA, Kwangduk Douglas LEE, Bok Hoen KIM, Zheng John YE, Swayambhu Prasad BEHERA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA-ALVAREZ, Jian J. CHEN
  • Patent number: 10450653
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 22, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jian J. Chen, Mohamad A. Ayoub, Juan Carlos Rocha-Alvarez, Zheng John Ye, Ramprakash Sankarakrishnan, Jianhua Zhou
  • Patent number: 10347465
    Abstract: Embodiments of the present invention relate to apparatus for enhancing deposition rate and improving a plasma profile during plasma processing of a substrate. According to embodiments, the apparatus includes a tuning electrode disposed in a substrate support pedestal and electrically coupled to a variable capacitor. The capacitance is controlled to control the RF and resulting plasma coupling to the tuning electrode. The plasma profile and the resulting deposition rate and deposited film thickness across the substrate are correspondingly controlled by adjusting the capacitance and impedance at the tuning electrode.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: July 9, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mohamad A. Ayoub, Jian J. Chen, Amit K. Bansal
  • Patent number: 10325800
    Abstract: Techniques are disclosed for methods and apparatuses for increasing the breakdown voltage while substantially reducing the voltage leakage of an electrostatic chuck at temperatures exceeding about 300 degrees Celsius in a processing chamber.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kulshreshtha, Kwangduk Douglas Lee, Bok Hoen Kim, Zheng John Ye, Swayambhu Prasad Behera, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Jian J. Chen
  • Publication number: 20190177848
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Application
    Filed: November 13, 2018
    Publication date: June 13, 2019
    Inventors: Jian J. CHEN, Mohamad A. AYOUB, Juan Carlos ROCHA-ALVAREZ, Zheng John YE, Ramprakash SANKARAKRISHNAN, Jianhua ZHOU
  • Publication number: 20190080916
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 14, 2019
    Inventors: Juan Carlos ROCHA-ALVAREZ, Amit Kumar BANSAL, Ganesh BALASUBRAMANIAN, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Mohamad A. AYOUB, Jian J. CHEN
  • Patent number: 10128118
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: November 13, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan, Mohamad A. Ayoub, Jian J. Chen
  • Patent number: 10125422
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: November 13, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jian J. Chen, Mohamad A. Ayoub, Juan Carlos Rocha-Alvarez, Zheng John Ye, Ramprakash Sankarakrishnan, Jianhua Zhou