Patents by Inventor Jian James Zhang

Jian James Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11439465
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 13, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jian James Zhang, Rongwei Jason Xuan, Danop Rajabhandharaks
  • Patent number: 11399892
    Abstract: A side-fire laser fiber includes an optical fiber having a distal end and a fiber cap. The fiber cap is coupled to the distal end of the optical fiber and includes a molded reflective surface and a sealed cavity. The molded reflective surface defines a wall of the cavity. Laser energy discharged from the distal end along a central axis of the optical fiber is reflected off the molded reflective surface in a direction that is transverse to the central axis.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 2, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
  • Publication number: 20220206239
    Abstract: A laser system includes a first laser cavity to output a laser light along a first path, a first mirror to receive the laser light from the first laser cavity, and redirect the laser light along a second path that is different than the first path, a second mirror to receive the laser light from the first mirror, and redirect the laser light along a third path that is different than the first path and the second path, a beam splitter located at a first position on the third path, a beam combiner located at a second position on the third path; and a coupling lens assembly, the coupling lens assembly including a lens located at a third position on the third path, wherein the coupling lens assembly moves the lens in x-, y-, and x-directions.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 30, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Xirong YANG, Baocheng YANG, Brian CHENG, Peter BULL, Viju PANICKER, Yang-Te FAN, Rongwei Jason XUAN, Thomas Charles HASENBERG, Jian James ZHANG
  • Publication number: 20220209488
    Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Honggang YU, Rongwei Jason XUAN, Jian James ZHANG
  • Patent number: 11316318
    Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: April 26, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
  • Publication number: 20220079673
    Abstract: A surgical laser system includes an array of laser diodes that are configured to output laser energy, a fiber bundle, a delivery fiber, and a tubular sheath. The fiber bundle includes a plurality of optical fibers and has a proximal end that is configured to receive laser energy from the array of laser diodes. The delivery fiber includes a proximal end that is configured to receive laser energy from a distal end of the fiber bundle. The tubular sheath defines a lumen, in which at least a portion of the delivery fiber is disposed. The tubular sheath is insertable into a working channel of an endoscope or a cystoscope. A distal end of the tubular sheath is configured to deliver laser energy discharged from the delivery fiber into a body of a patient.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Honggang YU, Rongwei Jason XUAN, Jian James ZHANG, David N. HORN, Xirong YANG, Thomas HASENBERG
  • Publication number: 20220079674
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason XUAN, Thomas C. HASENBERG, Jian James ZHANG, Steven Yihlih PENG, Danop RAJABHANDHARAKS
  • Patent number: 11213352
    Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 4, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Patent number: 11213351
    Abstract: A surgical laser system includes an array of laser diodes that are configured to output laser energy, a fiber bundle, a delivery fiber, and a tubular sheath. The fiber bundle includes a plurality of optical fibers and has a proximal end that is configured to receive laser energy from the array of laser diodes. The delivery fiber includes a proximal end that is configured to receive laser energy from a distal end of the fiber bundle. The tubular sheath defines a lumen, in which at least a portion of the delivery fiber is disposed. The tubular sheath is insertable into a working channel of an endoscope or a cystoscope. A distal end of the tubular sheath is configured to deliver laser energy discharged from the delivery fiber into a body of a patient.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 4, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang, David N. Horn, Xirong Yang, Thomas Hasenberg
  • Publication number: 20210098959
    Abstract: Techniques are provided for controlling an output laser pulse signal of a medical device. A control device defines a time duration of capacitive discharge to a laser device. The time duration corresponds to an intended energy of the output laser pulse signal. The control device generates a plurality of sub-pulse control signals. The sub-pulse control signals define a series of capacitive discharge events of the capacitor bank. The control device modulates one or more of a sub-pulse control signal period or a sub-pulse time duration of the sub-pulse control signals to modify the capacitive discharge of the capacitor bank to the laser device during the time duration.
    Type: Application
    Filed: September 25, 2020
    Publication date: April 1, 2021
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Jian James ZHANG, Baocheng YANG, Xirong YANG, Hyun Wook KANG, Brian CHENG, Peter BULL, Rongwei Jason XUAN, Thomas C. HASENBERG
  • Publication number: 20200197092
    Abstract: Embodiments of a surgical laser system comprise a laser source (102), a laser fiber (104), a photodetector (106) and a controller (108). The laser source is configured to generate laser energy (1 10). The laser fiber is optically coupled to the laser source and is configured to discharge the laser energy generated by the laser source. The photodetector is configured to generate an output signal (1 12) that is indicative of an intensity level of electromagnetic energy feedback (114) that is produced in response to the discharge of the laser energy. The controller is configured to control the laser source based on the output signal.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Rongwei Jason XUAN, Brian P. Watschke, Douglas L. Evans, Guangjian Wang, Wen-Jui Ray Chia, Nathan Brown, Thomas C. Hasenberg, Jian James Zhang, Hyun Wook Kang
  • Publication number: 20200163716
    Abstract: Aspects of this disclosure pertain to a device with an elongated body having a distal end. The distal end may comprise a port that permits discharge of a laser energy towards a tissue from an optical fiber located in the distal end. An exterior surface of the distal end may include a cauterization portion that permits discharge of a cauterization energy towards the tissue. In some aspects, the device includes an insulative portion that attaches the distal end to the elongated body and limits energy transfer therebetween. Related systems and methods are also disclosed.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Hui WANG, Wen-Jui Ray CHIA, Rongwei Jason XUAN, Jian James ZHANG, Aditi RAY, Honggang YU
  • Patent number: 10617470
    Abstract: Embodiments of a surgical laser systems may include a laser source configured to generate a laser energy; a laser fiber optically coupled to the laser source to discharge laser energy; a photodetector configured to generate an output signal indicative of an intensity level of electromagnetic energy feedback produced in response to the discharge of the laser energy; and a controller configured to control the laser source based on the output signal. Embodiments of a method of controlling a surgical laser system also are disclosed, wherein laser energy is generated using a laser source and discharged through a laser fiber. Electromagnetic energy feedback produced in response to discharging the laser energy is delivered to a photodetector. An output signal from the photodetector is analyzed using a controller. The laser source is controlled in response to analyzing an output signal using the controller.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 14, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Rongwei Jason Xuan, Brian P. Watschke, Douglas L. Evans, Guangjian Wang, Wen-Jui Ray Chia, Nathan Brown, Thomas C. Hasenberg, Jian James Zhang, Hyun Wook Kang
  • Patent number: 10582967
    Abstract: Aspects of this disclosure pertain to a device with an elongated body having a distal end. The distal end may comprise a port that permits discharge of a laser energy towards a tissue from an optical fiber located in the distal end. An exterior surface of the distal end may include a cauterization portion that permits discharge of a cauterization energy towards the tissue. In some aspects, the device includes an insulative portion that attaches the distal end to the elongated body and limits energy transfer therebetween. Related systems and methods are also disclosed.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 10, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Hui Wang, Wen-Jui Ray Chia, Rongwei Jason Xuan, Jian James Zhang, Aditi Ray, Honggang Yu
  • Publication number: 20200000522
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason XUAN, Thomas C. HASENBERG, Jian James ZHANG, Steven Yihlih PENG, Danop RAJABHANDHARAKS
  • Publication number: 20190393669
    Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
    Type: Application
    Filed: September 9, 2019
    Publication date: December 26, 2019
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
  • Patent number: 10454237
    Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 22, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
  • Patent number: 10441359
    Abstract: A surgical laser system includes a laser generator, a laser probe, a stone analyzer, and a controller. The laser generator is configured to generate laser energy based on laser energy settings. The laser probe is configured to discharge the laser energy. The stone analyzer has an output relating to a characteristic of a targeted stone. The controller comprises at least one processor configured to determine the laser energy settings based on the output.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20190159839
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Jian James Zhang, Rongwei Jason XUAN, Danop RAJABHANDHARAKS
  • Publication number: 20190151022
    Abstract: A surgical laser system includes an array of laser diodes that are configured to output laser energy, a fiber bundle, a delivery fiber, and a tubular sheath. The fiber bundle includes a plurality of optical fibers and has a proximal end that is configured to receive laser energy from the array of laser diodes. The delivery fiber includes a proximal end that is configured to receive laser energy from a distal end of the fiber bundle. The tubular sheath defines a lumen, in which at least a portion of the delivery fiber is disposed. The tubular sheath is insertable into a working channel of an endoscope or a cystoscope. A distal end of the tubular sheath is configured to deliver laser energy discharged from the delivery fiber into a body of a patient.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang, David N. Horn, Xirong Yang, Thomas Hasenberg