Patents by Inventor Jian James Zhang
Jian James Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10219863Abstract: A surgical laser system includes an array of laser diodes that are configured to output laser energy, a fiber bundle, a delivery fiber, and a tubular sheath. The fiber bundle includes a plurality of optical fibers and has a proximal end that is configured to receive laser energy from the array of laser diodes. The delivery fiber includes a proximal end that is configured to receive laser energy from a distal end of the fiber bundle. The tubular sheath defines a lumen, in which at least a portion of the delivery fiber is disposed. The tubular sheath is insertable into a working channel of an endoscope or a cystoscope. A distal end of the tubular sheath is configured to deliver laser energy discharged from the delivery fiber into a body of a patient.Type: GrantFiled: November 13, 2015Date of Patent: March 5, 2019Assignee: Boston Scientific Scimed, Inc.Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang, David N. Horn, Xirong Yang, Thomas Hasenberg
-
Patent number: 10149717Abstract: Aspects of this disclosure pertain to a device with an elongated body having a distal end. The distal end may comprise a port that permits discharge of a laser energy towards a tissue from an optical fiber located in the distal end. An exterior surface of the distal end may include a cauterization portion that permits discharge of a cauterization energy towards the tissue. In some aspects, the device includes an insulative portion that attaches the distal end to the elongated body and limits energy transfer therebetween. Related systems and methods are also disclosed.Type: GrantFiled: July 13, 2016Date of Patent: December 11, 2018Assignee: Boston Scientific Scimed, Inc.Inventors: Hui Wang, Wen-Jui Ray Chia, Rongwei Jason Xuan, Jian James Zhang, Aditi Ray, Honggang Yu
-
Publication number: 20180303549Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.Type: ApplicationFiled: June 29, 2018Publication date: October 25, 2018Applicant: Boston Scientific Scimed, Inc.Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
-
Patent number: 10039604Abstract: A system may include a stone analyzer, a controller, a laser generator, and a beam combiner. The stone analyzer may be configured to generate an output relating to a natural or resonance frequency of a kidney or bladder stone. The controller may be configured to determine the natural or resonance frequency of the stone based on the output from the stone analyzer, and match a resultant pulse repetition rate with the natural or resonance frequency. The laser generator may be configured to generate at least two laser pulse trains, with each laser pulse train including laser pulses at a pulse repetition rate. The beam combiner may be configured to combine the at least two laser pulse trains into a combined laser pulse train including laser pulses at the resultant pulse repetition rate.Type: GrantFiled: July 31, 2017Date of Patent: August 7, 2018Assignee: Boston Scientific Scimed, Inc.Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
-
Publication number: 20180049806Abstract: A side-fire laser fiber includes an optical fiber having a distal end and a fiber cap. The fiber cap is coupled to the distal end of the optical fiber and includes a molded reflective surface and a sealed cavity. The molded reflective surface defines a wall of the cavity. Laser energy discharged from the distal end along a central axis of the optical fiber is reflected off the molded reflective surface in a direction that is transverse to the central axis.Type: ApplicationFiled: March 19, 2015Publication date: February 22, 2018Inventors: Honggang YU, Rongwei Jason XUAN, Jian James ZHANG
-
Publication number: 20170325890Abstract: A system may include a stone analyzer, a controller, a laser generator, and a beam combiner. The stone analyzer may be configured to generate an output relating to a natural or resonance frequency of a kidney or bladder stone. The controller may be configured to determine the natural or resonance frequency of the stone based on the output from the stone analyzer, and match a resultant pulse repetition rate with the natural or resonance frequency. The laser generator may be configured to generate at least two laser pulse trains, with each laser pulse train including laser pulses at a pulse repetition rate. The beam combiner may be configured to combine the at least two laser pulse trains into a combined laser pulse train including laser pulses at the resultant pulse repetition rate.Type: ApplicationFiled: July 31, 2017Publication date: November 16, 2017Inventors: Wen-Jui Ray CHIA, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
-
Patent number: 9757199Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.Type: GrantFiled: March 11, 2013Date of Patent: September 12, 2017Assignee: Boston Scientific Scimed, Inc.Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
-
Publication number: 20170014187Abstract: Aspects of this disclosure pertain to a device with an elongated body having a distal end. The distal end may comprise a port that permits discharge of a laser energy towards a tissue from an optical fiber located in the distal end. An exterior surface of the distal end may include a cauterization portion that permits discharge of a cauterization energy towards the tissue. In some aspects, the device includes an insulative portion that attaches the distal end to the elongated body and limits energy transfer therebetween. Related systems and methods are also disclosed.Type: ApplicationFiled: July 13, 2016Publication date: January 19, 2017Applicant: Boston Scientific Scimed, Inc.Inventors: Hui Wang, Wen-Jui Ray CHIA, Rongwei Jason XUAN, Jian James ZHANG, Aditi RAY, Honggang YU
-
Publication number: 20160166319Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.Type: ApplicationFiled: December 10, 2015Publication date: June 16, 2016Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
-
Publication number: 20160135892Abstract: A surgical laser system includes an array of laser diodes that are configured to output laser energy, a fiber bundle, a delivery fiber, and a tubular sheath. The fiber bundle includes a plurality of optical fibers and has a proximal end that is configured to receive laser energy from the array of laser diodes. The delivery fiber includes a proximal end that is configured to receive laser energy from a distal end of the fiber bundle. The tubular sheath defines a lumen, in which at least a portion of the delivery fiber is disposed. The tubular sheath is insertable into a working channel of an endoscope or a cystoscope. A distal end of the tubular sheath is configured to deliver laser energy discharged from the delivery fiber into a body of a patient.Type: ApplicationFiled: November 13, 2015Publication date: May 19, 2016Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang, David N. Horn, Xirong Yang, Thomas Hasenberg
-
Publication number: 20160081749Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.Type: ApplicationFiled: September 24, 2015Publication date: March 24, 2016Inventors: Jian James Zhang, Rongwei Jason Xuan, Danop Rajabhandharaks
-
Publication number: 20150289937Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.Type: ApplicationFiled: March 11, 2013Publication date: October 15, 2015Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
-
Publication number: 20150272674Abstract: A laser lithotripsy method for fragmenting a kidney or bladder stone in a patient is provided. The method includes delivering a first laser energy having a first wavelength to the stone. The stone is heated in response to the delivery of the first laser energy to the stone. The method also includes delivering a second laser energy to the stone having a second wavelength that has a higher absorption by the stone or the fluid surrounding the stone than the first wavelength. The stone is fragmented in response to the delivery of the second laser energy to the stone.Type: ApplicationFiled: November 6, 2013Publication date: October 1, 2015Applicant: AMS RESEARCH CORPORATIONInventors: Rongwei Jason Xuan, Thomas Charles Hasenberg, Jian James Zhang
-
Publication number: 20150230864Abstract: Embodiments of a surgical laser system comprise a laser source, a laser fiber, a photodetector and a controller. The laser source is configured to generate laser energy. The laser fiber is optically coupled to the laser source and is configured to discharge the laser energy generated by the laser source. The photodetector is configured to generate an output signal that is indicative of an intensity level of electromagnetic energy feedback that is produced in response to the discharge of the laser energy. The controller is configured to control the laser source based on the output signal. In embodiments of a method of controlling a surgical laser system, laser energy is generated using a laser source. The laser energy is discharged through a laser fiber. Electromagnetic energy feedback is produced in response to discharging the laser energy is delivered to a photodetector. An output signal from the photodetector is analyzed using a controller.Type: ApplicationFiled: March 11, 2013Publication date: August 20, 2015Inventors: Rongwei Jason Xuan, Brian P. Watschke, Douglas L. Evans, Guangjian Wang, Wen-Jui Ray Chia, Nathan Brown, Thomas C. Hasenberg, Jian James Zhang, Hyun Wook Kang