Patents by Inventor Jian-Ping Wang

Jian-Ping Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692635
    Abstract: A bulk permanent magnetic material may include between about 5 volume percent and about 40 volume percent Fe16N2 phase domains, a plurality of nonmagnetic atoms or molecules forming domain wall pinning sites, and a balance soft magnetic material, wherein at least some of the soft magnetic material is magnetically coupled to the Fe16N2 phase domains via exchange spring coupling. In some examples, a bulk permanent magnetic material may be formed by implanting N+ ions in an iron workpiece using ion implantation to form an iron nitride workpiece, pre-annealing the iron nitride workpiece to attach the iron nitride workpiece to a substrate, and post-annealing the iron nitride workpiece to form Fe16N2 phase domains within the iron nitride workpiece.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: June 23, 2020
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Publication number: 20200176042
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna
  • Publication number: 20200144485
    Abstract: A semiconductor device includes a substrate having an array region defined thereon, a ring of magnetic tunneling junction (MTJ) region surrounding the array region, a gap between the array region and the ring of MTJ region, and metal interconnect patterns overlapping part of the ring of MTJ region. Preferably, the ring of MTJ region comprises an octagon and the ring of MTJ region includes a first MTJ region and a second MTJ region extending along a first direction, a third MTJ region and a fourth MTJ region extending along a second direction, a fifth MTJ region and a sixth MTJ region extending along a third direction, and a seventh MTJ region and an eighth MTJ region extending along a fourth direction.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 7, 2020
    Inventors: Chung-Liang Chu, Jian-Cheng Chen, Yu-Ping Wang, Yu-Ruei Chen
  • Publication number: 20200144483
    Abstract: A semiconductor device includes a substrate having an array region defined thereon, a ring of magnetic tunneling junction (MTJ) region surrounding the array region, wherein the ring of MTJ region comprises a first MTJ, and metal interconnect patterns overlapping part of the ring of MTJ region. Preferably, each of the metal interconnect patterns includes a first metal interconnection connected to the first MTJ directly.
    Type: Application
    Filed: December 31, 2019
    Publication date: May 7, 2020
    Inventors: Chung-Liang Chu, Jian-Cheng Chen, Yu-Ping Wang, Yu-Ruei Chen
  • Publication number: 20200139445
    Abstract: Techniques are disclosed for milling an iron-containing raw material in the presence of a nitrogen source to generate anisotropically shaped particles that include iron nitride and have an aspect ratio of at least 1.4. Techniques for nitridizing an anisotropic particle including iron, and annealing an anisotropic particle including iron nitride to form at least one ??-Fe16N2 phase domain within the anisotropic particle including iron nitride also are disclosed. In addition, techniques for aligning and joining anisotropic particles to form a bulk material including iron nitride, such as a bulk permanent magnet including at least one ??-Fe16N2 phase domain, are described. Milling apparatuses utilizing elongated bars, an electric field, and a magnetic field also are disclosed.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Jian-Ping WANG, YanFeng JIANG
  • Publication number: 20200134113
    Abstract: A method for accelerating an explicit finite element analysis (FEA) simulation of a modeled system or process includes performing an initial iteration of the FEA simulation according to a baseline time interval via an FEA computing network, and calculating a criteria ratio of a predetermined set of scaling criteria for the modeled system or process. The method includes determining a time-scaling factor using the criteria ratio via the FEA computing network as a function of the criteria ratio, and then applying the time-scaling factor to the baseline time interval to generate a scaled time interval. The scaled time interval accelerates simulation time of the FEA simulation. The method includes performing a subsequent iteration of the explicit FEA simulation at the scaled time interval using the FEA computing network. The process continues for subsequent iterations, with the time-scaling factor adapting with each iteration.
    Type: Application
    Filed: June 25, 2019
    Publication date: April 30, 2020
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS LLC, UT-Battelle, LLC
    Inventors: Jian Chen, Hui Huang, Zhili Feng, Blair Carlson, Hui-Ping Wang, Wayne Cai
  • Publication number: 20200098382
    Abstract: A method for eliminating sound is disclosed. The method is applied to an electronic device capable of connecting with a sound playback device and includes a microphone. The method includes the following steps of: receiving a first input sound via the microphone to acquire a first input sound signal; recording the first input sound signal and transmitting the first input sound signal to the sound playback device; receiving a second input sound from the sound playback device to acquire a second input sound signal, wherein the second input sound is generated by the sound playback device according to the first input sound signal; determining a difference in generation times between the first input sound signal and the second input sound signal; and filtering the second input sound signal according to the difference in generation times and the first input sound signal.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 26, 2020
    Inventors: Kuo-Wei KAO, Cheng-Te WANG, Po-Jui WU, Jian-Ying LI, Kuo-Ping YANG
  • Patent number: 10586579
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 10, 2020
    Assignees: Regents of the University of Minnesota, Carnegie Mellon University
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna
  • Patent number: 10573439
    Abstract: The disclosure describes multilayer hard magnetic materials including at least one layer including ??-Fe16N2 and at least one layer including ??-Fe16(NxZ1-x)2 or a mixture of ??-Fe16N2 and ??-Fe16Z2, where Z includes at least one of C, B, or O, and x is a number greater than zero and less than one. The disclosure also describes techniques for forming multilayer hard magnetic materials including at least one layer including ??-Fe16N2 and at least one layer including ??-Fe16(NxZ1-x)2 or a mixture of ??-Fe16N2 and ??-Fe16Z2 using chemical vapor deposition or liquid phase epitaxy.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: February 25, 2020
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Patent number: 10566520
    Abstract: A semiconductor device includes a substrate having an array region defined thereon, a ring of magnetic tunneling junction (MTJ) region surrounding the array region, a gap between the array region and the ring of MTJ region, and metal interconnect patterns overlapping part of the ring of MTJ region. Preferably, the ring of MTJ region further includes a first MTJ region and a second MTJ region extending along a first direction and a third MTJ region and a fourth MTJ region extending along a second direction.
    Type: Grant
    Filed: July 8, 2018
    Date of Patent: February 18, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Liang Chu, Jian-Cheng Chen, Yu-Ping Wang, Yu-Ruei Chen
  • Patent number: 10562103
    Abstract: Techniques are disclosed for milling an iron-containing raw material in the presence of a nitrogen source to generate anisotropically shaped particles that include iron nitride and have an aspect ratio of at least 1.4. Techniques for nitridizing an anisotropic particle including iron, and annealing an anisotropic particle including iron nitride to form at least one a?-Fe16N2 phase domain within the anisotropic particle including iron nitride also are disclosed. In addition, techniques for aligning and joining anisotropic particles to form a bulk material including iron nitride, such as a bulk permanent magnet including at least one a?-Fe16N2 phase domain, are described. Milling apparatuses utilizing elongated bars, an electric field, and a magnetic field also are disclosed.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 18, 2020
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, YanFeng Jiang
  • Publication number: 20200038951
    Abstract: Example nanoparticles may include an iron-based core, and a shell. The shell may include a non-magnetic, anti-ferromagnetic, or ferrimagnetic material. Example alloy compositions may include an iron-based grain, and a grain boundary. The grain boundary may include a non-magnetic, anti-ferromagnetic, or ferrimagnetic material. Example techniques for forming iron-based core-shell nanoparticles may include depositing a shell on an iron-based core. The depositing may include immersing the iron-based core in a salt composition for a predetermined period of time. The depositing may include milling the iron-based core with a salt composition for a predetermined period of time. Example techniques for treating a composition comprising core-shell nanoparticles may include nitriding the composition.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 6, 2020
    Inventors: Jian-Ping WANG, Bin MA, Jinming LIU, Yiming WU, YanFeng JIANG
  • Patent number: 10546997
    Abstract: Articles including a fixing layer and a free layer including a layer including an FePd alloy. The free layer may include a composite layer including a perpendicular synthetic antiferromagnetic (p-SAF) structure. Techniques for forming and using articles including FePd alloy layers or p-SAF structures. Example articles and techniques may be usable for storage and logic devices.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: January 28, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Delin Zhang
  • Publication number: 20200027654
    Abstract: The disclosure is directed to an iron-nitride material having a polycrystalline microstructure including a plurality of elongated crystallographic grains with grain boundaries, the iron-nitride material including at least one of an ??-Fe16N2 phase and a body-center-tetragonal (bct) phase comprising Fe and N. The disclosure is also directed a method producing an iron-nitride material.
    Type: Application
    Filed: May 28, 2019
    Publication date: January 23, 2020
    Inventors: Jian-Ping WANG, Md MEHEDI, YanFeng JIANG, Bin MA, Delin ZHANG, Fan ZHANG, Jinming LIU
  • Patent number: 10529775
    Abstract: This disclosure describes an example device that includes a first contact line, a second contact line, a spin-orbital coupling channel, and a magnet. The spin-orbital coupling channel is coupled to, and is positioned between, the first contact line and second contact line. The magnet is coupled to the spin-orbital coupling channel and positioned between the first contact line and the second contact line. A resistance of the magnet and spin-orbital coupling channel is a unidirectional magnetoresistance.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: January 7, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Yang Lv, Mahdi Jamali
  • Publication number: 20200007994
    Abstract: A method of reducing a noise generated by touching a hearing aid includes: obtaining a left ear sound received by a left ear hearing aid and a right ear sound received by a right ear hearing aid; determining if a sound energy intensity difference between the left ear sound and the right ear sound is greater than an energy threshold; if so, determining a larger energy intensity between the left ear sound and the right ear sound; if the energy intensity of the left ear sound is larger, replacing the left ear sound with the right ear sound such that the left and right ear hearing aids both output the right ear sound.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 2, 2020
    Inventors: Kuo-Wei KAO, Kuan-Li CHAO, Po-Jui WU, Jian-Ying LI, Cheng-Te WANG, Kuo-Ping YANG
  • Publication number: 20190378971
    Abstract: A semiconductor device includes a substrate having an array region defined thereon, a ring of magnetic tunneling junction (MTJ) region surrounding the array region, a gap between the array region and the ring of MTJ region, and metal interconnect patterns overlapping part of the ring of MTJ region. Preferably, the ring of MTJ region further includes a first MTJ region and a second MTJ region extending along a first direction and a third MTJ region and a fourth MTJ region extending along a second direction.
    Type: Application
    Filed: July 8, 2018
    Publication date: December 12, 2019
    Inventors: Chung-Liang Chu, Jian-Cheng Chen, Yu-Ping Wang, Yu-Ruei Chen
  • Patent number: 10504640
    Abstract: The disclosure describes magnetic materials including iron nitride, bulk permanent magnets including iron nitride, techniques for forming magnetic materials including iron nitride, and techniques for forming bulk permanent magnets including iron nitride.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: December 10, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Patent number: 10454592
    Abstract: Techniques are described for data transfer in spin-based systems where digital bit values are represented by magnetization states of magnetoresistive devices rather than voltages or currents. For data transmission, a spin-based signal is converted to an optical signal and transmitted via an optical transport. For data reception, the optical signal is received via the optical transport and converted back to a spin-based signal. Such data transfer may not require an intervening conversion of the spin-based signal to charge-based signal that relies on voltages or currents to represent digital bit values. In addition, techniques are described to use magnetoresistive devices to control the amount of current or voltage that is delivered, where the magnetization state of the magnetoresistive device is set by an optical signal.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: October 22, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Mo Li, Jian-Ping Wang
  • Publication number: 20190316253
    Abstract: The disclosure describes hard magnetic materials including ??-Fe16N2 and techniques for forming hard magnetic materials including ??-Fe16N2 using chemical vapor deposition or liquid phase epitaxy.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 17, 2019
    Inventors: Jian-Ping WANG, YanFeng JIANG