Patents by Inventor Jiing-Feng Yang

Jiing-Feng Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021494
    Abstract: A method includes forming a transistor over a front side of a substrate, in which the transistor comprises a channel region, a gate region over the channel region, and source/drain regions on opposite sides of the gate region; forming a front-side interconnect structure over the transistor, wherein the front-side interconnect structure includes a dielectric layer and conductive features; and bonding the front-side interconnect structure to a carrier substrate via a bonding layer, in which the bonding layer is between the front-side interconnect structure and the carrier substrate, and the bonding layer has a higher thermal conductivity than the dielectric layer of the front-side interconnect structure.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Sheh HUANG, Yung-Shih CHENG, Jiing-Feng YANG, Yu-Hsiang CHEN, Chii-Ping CHEN
  • Publication number: 20230369285
    Abstract: A method of fabricating a semiconductor chip includes the following steps. A bonding material layer is formed on a first wafer substrate and is patterned to form a first bonding layer having a strength adjustment pattern. A semiconductor component layer and a first interconnect structure layer are formed on a second wafer substrate. The first interconnect structure layer is located. A second bonding layer is formed on the first interconnect structure layer. The second wafer substrate is bonded to the first wafer substrate by contacting the second bonding layer with the first bonding layer. A bonding interface of the second bonding layer and the first bonding layer is smaller than an area of the second bonding layer. A second interconnect structure layer is formed on the semiconductor component layer. A conductor terminal is formed on the second interconnect structure layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Wei Chan, Jiing-Feng Yang, Yung-Shih Cheng, Yao-Te Huang, Hui Lee
  • Patent number: 11756924
    Abstract: A method of fabricating a semiconductor chip includes the following steps. A bonding material layer is formed on a first wafer substrate and is patterned to form a first bonding layer having a strength adjustment pattern. A semiconductor component layer and a first interconnect structure layer are formed on a second wafer substrate. The first interconnect structure layer is located. A second bonding layer is formed on the first interconnect structure layer. The second wafer substrate is bonded to the first wafer substrate by contacting the second bonding layer with the first bonding layer. A bonding interface of the second bonding layer and the first bonding layer is smaller than an area of the second bonding layer. A second interconnect structure layer is formed on the semiconductor component layer. A conductor terminal is formed on the second interconnect structure layer.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: September 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Wei Chan, Jiing-Feng Yang, Yung-Shih Cheng, Yao-Te Huang, Hui Lee
  • Patent number: 11551968
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) in which cavities separate wires of an interconnect structure. For example, a conductive feature overlies a substrate, and an intermetal dielectric (IMD) layer overlies the conductive feature. A first wire and a second wire neighbor in the IMD layer and respectively have a first sidewall and a second sidewall that face each other while being separated from each other by the IMD layer. Further, the first wire overlies and borders the conductive feature. A first cavity and a second cavity further separate the first and second sidewalls from each other. The first cavity separates the first sidewall from the IMD layer, and the second cavity separates the second sidewall from the IMD layer. The cavities reduce parasitic capacitance between the first and second wires and hence resistance-capacitance (RC) delay that degrades IC performance.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Wen Hsueh, Jiing-Feng Yang, Chii-Ping Chen, Po-Hsiang Huang, Chang-Wen Chen, Cai-Ling Wu
  • Publication number: 20220359266
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) in which cavities separate wires of an interconnect structure. For example, a conductive feature overlies a substrate, and an intermetal dielectric (IMD) layer overlies the conductive feature. A first wire and a second wire neighbor in the IMD layer and respectively have a first sidewall and a second sidewall that face each other while being separated from each other by the IMD layer. Further, the first wire overlies and borders the conductive feature. A first cavity and a second cavity further separate the first and second sidewalls from each other. The first cavity separates the first sidewall from the IMD layer, and the second cavity separates the second sidewall from the IMD layer. The cavities reduce parasitic capacitance between the first and second wires and hence resistance-capacitance (RC) delay that degrades IC performance.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Hsiu-Wen Hsueh, Jiing-Feng Yang, Chii-Ping Chen, Po-Hsiang Huang, Chang-Wen Chen, Cai-Ling Wu
  • Publication number: 20220310527
    Abstract: Semiconductor devices and methods of manufacturing the semiconductor devices are described herein. A method includes forming an interconnect structure over a device wafer. The device wafer includes a first integrated circuit, a semiconductor substrate, and a redistribution structure. The method further includes forming a metallization layer and a group of dummy insertion structures having a stepped pattern density in a topmost dielectric layer of the interconnect structure. The group of dummy insertion structures and the metallization layer are planarized with the dielectric layer. The method further includes forming a first bonding layer over the group of dummy insertion structures, the metallization layer, and the dielectric layer. The method further includes bonding a carrier wafer to the first bonding layer, forming an opening through the semiconductor substrate, and forming a conductive via in the opening and electrically coupled to the redistribution structure.
    Type: Application
    Filed: July 30, 2021
    Publication date: September 29, 2022
    Inventors: Yao-Te Huang, Hong-Wei Chan, Yung-Shih Cheng, Jiing-Feng Yang, Hui Lee
  • Publication number: 20220310559
    Abstract: A method of fabricating a semiconductor chip includes the following steps. A bonding material layer is formed on a first wafer substrate and is patterned to form a first bonding layer having a strength adjustment pattern. A semiconductor component layer and a first interconnect structure layer are formed on a second wafer substrate. The first interconnect structure layer is located. A second bonding layer is formed on the first interconnect structure layer. The second wafer substrate is bonded to the first wafer substrate by contacting the second bonding layer with the first bonding layer. A bonding interface of the second bonding layer and the first bonding layer is smaller than an area of the second bonding layer. A second interconnect structure layer is formed on the semiconductor component layer. A conductor terminal is formed on the second interconnect structure layer.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Wei Chan, Jiing-Feng Yang, Yung-Shih Cheng, Yao-Te Huang, Hui Lee
  • Publication number: 20220028752
    Abstract: A method includes forming a transistor over a front side of a substrate, in which the transistor comprises a channel region, a gate region over the channel region, and source/drain regions on opposite sides of the gate region; forming a front-side interconnect structure over the transistor, wherein the front-side interconnect structure includes a dielectric layer and conductive features; and bonding the front-side interconnect structure to a carrier substrate via a bonding layer, in which the bonding layer is between the front-side interconnect structure and the carrier substrate, and the bonding layer has a higher thermal conductivity than the dielectric layer of the front-side interconnect structure.
    Type: Application
    Filed: March 30, 2021
    Publication date: January 27, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Sheh HUANG, Yung-Shih CHENG, Jiing-Feng YANG, Yu-Hsiang CHEN, Chii-Ping CHEN
  • Publication number: 20220013407
    Abstract: A semiconductor structure and method of forming the same are provided. The method includes: forming a plurality of mandrel patterns over a dielectric layer; forming a first spacer and a second spacer on sidewalls of the plurality of mandrel patterns, wherein a first width of the first spacer is larger than a second width of the second spacer; removing the plurality of mandrel patterns; patterning the dielectric layer using the first spacer and the second spacer as a patterning mask; and forming conductive lines laterally aside the dielectric layer.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hsin Chan, Jiing-Feng Yang, Kuan-Wei Huang, Meng-Shu Lin, Yu-Yu Chen, Chia-Wei Wu, Chang-Wen Chen, Wei-Hao Lin, Ching-Yu Chang
  • Publication number: 20210335655
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) in which cavities separate wires of an interconnect structure. For example, a conductive feature overlies a substrate, and an intermetal dielectric (IMD) layer overlies the conductive feature. A first wire and a second wire neighbor in the IMD layer and respectively have a first sidewall and a second sidewall that face each other while being separated from each other by the IMD layer. Further, the first wire overlies and borders the conductive feature. A first cavity and a second cavity further separate the first and second sidewalls from each other. The first cavity separates the first sidewall from the IMD layer, and the second cavity separates the second sidewall from the IMD layer. The cavities reduce parasitic capacitance between the first and second wires and hence resistance-capacitance (RC) delay that degrades IC performance.
    Type: Application
    Filed: September 23, 2020
    Publication date: October 28, 2021
    Inventors: Hsiu-Wen Hsueh, Jiing-Feng Yang, Chii-Ping Chen, Po-Hsiang Huang, Chang-Wen Chen, Cai-Ling Wu
  • Patent number: 10361152
    Abstract: A semiconductor structure comprises a first conductive material-containing layer. The first conductive material-containing layer comprises a dielectric material, at least two conductive structures in the dielectric material, and an air-gap region in the dielectric material between the at least two conductive structures. The semiconductor structure also comprises a capping layer over the at least two conductive structures and the air-gap region. The semiconductor structure further comprises a second conductive material-containing layer over the capping layer. The second conductive material-containing layer comprises a via plug electrically connected to one of the at least two conductive structures. The via plug is separated from the air-gap region by at least a first predetermined distance. The semiconductor structure additionally comprises a conductive pad over the second conductive material-containing layer. The conductive pad is offset from the air-gap region by at least a second predetermined distance.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: July 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Hui Su, Cheng-Lin Huang, Jiing-Feng Yang, Zhen-Cheng Wu, Ren-Guei Wu, Dian-Hau Chen, Yuh-Jier Mii
  • Patent number: 9257279
    Abstract: A method of forming a semiconductor device, and a product formed thereby, is provided. The method includes forming a pattern in a mask layer using, for example, double patterning or multi-patterning techniques. The mask is treated to smooth or round sharp corners. In an embodiment in which a positive pattern is formed in the mask, the treatment may comprise a plasma process or an isotropic wet etch. In an embodiment in which a negative pattern is formed in the mask, the treatment may comprise formation of conformal layer over the mask pattern. The conformal layer will have the effect of rounding the sharp corners. Other techniques may be used to smooth or round the corners of the mask.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiing-Feng Yang, Chii-Ping Chen, Dian-Hau Chen
  • Patent number: 9099530
    Abstract: Integrated circuit methods are described. The methods include providing a photomask that includes two main features for two via openings and further includes an optical proximity correction (OPC) feature linking the two main features; forming a hard mask layer on a substrate, the hard mask layer including two trench openings; forming a patterned resist layer over the hard mask layer using the photomask, wherein the patterned resist layer includes a peanut-shaped opening with two end portion aligned with the two trench openings of the hard mask layer, respectively; and performing a first etch process to the substrate using the hard mask layer and the patterned resist layer as a combined etch mask.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: August 4, 2015
    Assignee: Taiwan Semiconductor Manufacturing Compnay, Ltd.
    Inventors: Chung-Yi Lin, Jiing-Feng Yang, Tzu-Hao Huang, Chih-Hao Hsieh, Dian-Hau Chen, Hsiang-Lin Chen, Ko-Bin Kao, Yung-Shih Cheng
  • Publication number: 20150200160
    Abstract: A semiconductor structure comprises a first conductive material-containing layer. The first conductive material-containing layer comprises a dielectric material, at least two conductive structures in the dielectric material, and an air-gap region in the dielectric material between the at least two conductive structures. The semiconductor structure also comprises a capping layer over the at least two conductive structures and the air-gap region. The semiconductor structure further comprises a second conductive material-containing layer over the capping layer. The second conductive material-containing layer comprises a via plug electrically connected to one of the at least two conductive structures. The via plug is separated from the air-gap region by at least a first predetermined distance. The semiconductor structure additionally comprises a conductive pad over the second conductive material-containing layer. The conductive pad is offset from the air-gap region by at least a second predetermined distance.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Inventors: Shu-Hui SU, Cheng-Lin HUANG, Jiing-Feng YANG, Zhen-Cheng WU, Ren-Guei WU, Dian-Hau CHEN, Yuh-Jier MII
  • Patent number: 8999839
    Abstract: A method of manufacturing a semiconductor structure, the method includes removing a portion of a dielectric filler from a first metal-containing layer formed over a semiconductor substrate to define an air-gap region according to a predetermined air-gap pattern. The method further includes filling the air-gap region with a decomposable filler and forming a dielectric capping layer over the first metal-containing layer. The method further includes decomposing the decomposable filler.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Hui Su, Cheng-Lin Huang, Jiing-Feng Yang, Zhen-Cheng Wu, Ren-Guei Wu, Dian-Hau Chen, Yuh-Jier Mii
  • Publication number: 20140242794
    Abstract: Integrated circuit methods are described. The methods include providing a photomask that includes two main features for two via openings and further includes an optical proximity correction (OPC) feature linking the two main features; forming a hard mask layer on a substrate, the hard mask layer including two trench openings; forming a patterned resist layer over the hard mask layer using the photomask, wherein the patterned resist layer includes a peanut-shaped opening with two end portion aligned with the two trench openings of the hard mask layer, respectively; and performing a first etch process to the substrate using the hard mask layer and the patterned resist layer as a combined etch mask.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yi Lin, Jiing-Feng Yang, Tzu-Hao Huang, Chih-Hao Hsieh, Dian-Hau Chen, Hsiang-Lin Chen, Ko-Bin Kao, Yung-Shih Cheng
  • Patent number: 8728332
    Abstract: Integrated circuit methods are described. The methods include providing a photomask that includes two main features for two via openings and further includes an optical proximity correction (OPC) feature linking the two main features; forming a hard mask layer on a substrate, the hard mask layer including two trench openings; forming a patterned resist layer over the hard mask layer using the photomask, wherein the patterned resist layer includes a peanut-shaped opening with two end portion aligned with the two trench openings of the hard mask layer, respectively; and performing a first etch process to the substrate using the hard mask layer and the patterned resist layer as a combined etch mask.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 20, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yi Lin, Jiing-Feng Yang, Tzu-Hao Huang, Chih-Hao Hsieh, Dian-Hau Chen, Hsiang-Lin Chen, Ko-Bin Kao, Yung-Shih Cheng
  • Publication number: 20130295769
    Abstract: Integrated circuit methods are described. The methods include providing a photomask that includes two main features for two via openings and further includes an optical proximity correction (OPC) feature linking the two main features; forming a hard mask layer on a substrate, the hard mask layer including two trench openings; forming a patterned resist layer over the hard mask layer using the photomask, wherein the patterned resist layer includes a peanut-shaped opening with two end portion aligned with the two trench openings of the hard mask layer, respectively; and performing a first etch process to the substrate using the hard mask layer and the patterned resist layer as a combined etch mask.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Yi Lin, Jiing-Feng Yang, Tzu-Hao Huang, Chih-Hao Hsieh, Dian-Hau Chen, Hsiang-Lin Chen, Ko-Bin Kao, Yung-Shih Cheng
  • Publication number: 20130260563
    Abstract: A method of forming a semiconductor device, and a product formed thereby, is provided. The method includes forming a pattern in a mask layer using, for example, double patterning or multi-patterning techniques. The mask is treated to smooth or round sharp corners. In an embodiment in which a positive pattern is formed in the mask, the treatment may comprise a plasma process or an isotropic wet etch. In an embodiment in which a negative pattern is formed in the mask, the treatment may comprise formation of conformal layer over the mask pattern. The conformal layer will have the effect of rounding the sharp corners. Other techniques may be used to smooth or round the corners of the mask.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiing-Feng Yang, Chii-Ping Chen, Dian-Hau Chen
  • Publication number: 20130252144
    Abstract: A method of manufacturing a semiconductor structure, the method includes removing a portion of a dielectric filler from a first metal-containing layer formed over a semiconductor substrate to define an air-gap region according to a predetermined air-gap pattern. The method further includes filling the air-gap region with a decomposable filler and forming a dielectric capping layer over the first metal-containing layer. The method further includes decomposing the decomposable filler.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMAPNY, LTD.
    Inventors: Shu-Hui SU, Cheng-Lin HUANG, Jiing-Feng YANG, Zhen-Cheng WU, Ren-Guei WU, Dian-Hau CHEN, Yuh-Jier MII