Patents by Inventor Jin-Bum Kim
Jin-Bum Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8598024Abstract: A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.Type: GrantFiled: September 22, 2011Date of Patent: December 3, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-Bum Kim, Chul-Sung Kim, Sang-Woo Lee, Yu-Gyun Shin
-
Patent number: 8586223Abstract: A secondary battery that includes a cylindrical can, an electrode assembly arranged in a jelly-role configuration within the cylindrical can and having a core extending about an axis thereof and a hollow center pin arranged within the core of the electrode assembly and having an inner diameter and an outer diameter, the outer diameter forming ones of a pair of radial lengths diametrically opposite from each other, each of said pair of radial lengths extending from the outer diameter of the center pin to an external surface of the core, wherein the sum of the pair of radial lengths is in the range of 5% to 54% of the inner diameter of the center pin.Type: GrantFiled: August 24, 2010Date of Patent: November 19, 2013Assignee: Samsung SDI Co., Ltd.Inventors: Hyo-Rim Bak, Jin-Bum Kim, Wan-Mook Lim, Hae-Kwon Yoon, Myoung-Han Ryu
-
Patent number: 8552494Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.Type: GrantFiled: December 7, 2010Date of Patent: October 8, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee
-
Patent number: 8530303Abstract: A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.Type: GrantFiled: September 23, 2011Date of Patent: September 10, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-Bum Kim, Chul-Sung Kim, Yu-Gyun Shin, Dae-Yong Kim, Joon-Gon Lee, Kwang-Young Lee
-
Patent number: 8470703Abstract: Methods of forming a semiconductor device include providing a substrate having an area including a source and a drain region of a transistor. A nickel (Ni) metal film is formed on the substrate area including the source and the drain region. A first heat-treatment process is performed including heating the substrate including the metal film from a first temperature to a second temperature at a first ramping rate and holding the substrate including the metal film at the second temperature for a first period of time. A second heat-treatment process is then performed including heating the substrate including the metal film from a third temperature to a fourth temperature at a second ramping rate and holding the substrate at the fourth temperature for a second period of time. The fourth temperature is different from the second temperature and the second period of time is different from the first period of time.Type: GrantFiled: May 11, 2011Date of Patent: June 25, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Byung-Hak Lee, Yu-Gyun Shin, Sang-Woo Lee, Sun-Ghil Lee, Jin-Bum Kim, Joon-Gon Lee
-
Patent number: 8409947Abstract: Provided is a simplified method of manufacturing a semiconductor device having a stress creating layer. A first conductive first impurity region is formed on a semiconductor substrate on both sides of a first gate of a first area of the semiconductor substrate, and a second conductive second impurity region is formed on the semiconductor substrate on both sides of a second gate of a second area. First and second spacers are formed on sidewalls of the first and second gates, respectively. First and second semiconductor layers are formed in portions of the semiconductor substrate so as to contact the first and second impurity regions, respectively. The second semiconductor layer is removed. First and second barrier layers are formed in the first and second contact holes of the insulation layer, respectively.Type: GrantFiled: January 25, 2010Date of Patent: April 2, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Wook-je Kim, Yu-gyun Shin, Kwan-heum Lee, Sun-ghil Lee
-
Patent number: 8361860Abstract: A method of manufacturing a semiconductor device may include forming a first interlayer insulation layer on a substrate including at least one gate structure formed thereon, the substrate having a plurality of source/drain regions formed on both sides of the at least one gate structure, forming at least one buried contact plug on at least one of the plurality of source/drain regions and in the first interlayer insulation layer, forming a second interlayer insulation layer on the first interlayer insulation layer and the at least one buried contact plug, exposing the at least one buried contact plug in the second interlayer insulation layer by forming at least one contact hole, implanting ions in the at least one contact hole in order to create an amorphous upper portion of the at least one buried contact plug, depositing a lower electrode layer on the second interlayer insulation layer and the at least one contact hole, and forming a metal silicide layer in the amorphous upper portion of the at least one buriType: GrantFiled: January 19, 2010Date of Patent: January 29, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Wook-je Kim, Kwan-heum Lee, Yu-gyun Shin, Sun-ghil Lee
-
Patent number: 8324043Abstract: Methods of manufacturing semiconductor devices may include forming a first layer on a first active region (P-channel FET), forming a second layer on a second active region (N-channel FET), the first and second layers including a silicon germanium (SiGe) epitaxial layer sequentially stacked on a silicon (Si) epitaxial layer, forming a first contact hole in an interlayer insulating film including a first lower region exposing the SiGe epitaxial layer of the first layer, forming a second contact hole in the interlayer insulating film including a second lower region penetrating through the SiGe epitaxial layer of the second layer and exposing the Si epitaxial layer of the second layer, forming a first metal silicide film including germanium (Ge) in the first lower region, forming a second metal silicide film not including Ge in the second lower region simultaneously with the forming of the first metal silicide film.Type: GrantFiled: September 8, 2011Date of Patent: December 4, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Si-young Choi, Hyung-ik Lee, Ki-hong Kim, Yong-koo Kyoung
-
Patent number: 8273620Abstract: Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.Type: GrantFiled: June 4, 2010Date of Patent: September 25, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Young-pil Kim, Si-young Choi, Byeong-chan Lee, Jong-wook Lee
-
Patent number: 8257871Abstract: An electrolyte for a lithium secondary battery, and a lithium secondary battery including the same are provided. The electrolyte includes: a cyclic ester; an organic solvent including a nitrile-containing solvent represented by Formula 1 at a content ranging from 1 to 5% by volume; and a lithium salt, R—C?N??(1) wherein R is selected from the group consisting of a C1 to C10 aliphatic hydrocarbon, a C1 to C10 halogenated aliphatic hydrocarbon, a C6 to C10 aromatic hydrocarbon, and a C6 to C10 halogenated aromatic hydrocarbon. The electrolyte can improve swelling characteristics and discharge capacity characteristics at a low temperature, and realize equal or better performance in characteristics such as capacity, life span and the like, as compared to a conventional carbonate-containing electrolyte.Type: GrantFiled: November 15, 2007Date of Patent: September 4, 2012Assignee: Samsung SDI Co., Ltd.Inventors: Na-Rae Park, Jin-Bum Kim, Jin-Sung Kim, Yong-Shik Kim
-
Publication number: 20120184079Abstract: A semiconductor device can include a first gate electrode including a gate insulating pattern, a gate conductive pattern and a capping pattern that are sequentially stacked on a semiconductor substrate, and a first spacer of a low dielectric constant disposed on a lower sidewall of the first gate electrode. A second spacer of a high dielectric constant, that is greater than the low dielectric constant, is disposed on an upper sidewall of the first gate electrode above the first spacer.Type: ApplicationFiled: March 23, 2012Publication date: July 19, 2012Inventors: Jin-Bum Kim, Kwan-Heum Lee, Seung-Hun Lee, Byeong-Chan Lee, Sun-Ghil Lee
-
Publication number: 20120178231Abstract: Methods for fabricating a metal silicide layer and for fabricating a semiconductor device having such a metal silicide layer are provided wherein, in an embodiment, the method includes the steps of forming a metal layer on a substrate, performing a first thermal process on the substrate to allow the substrate and the metal layer to react with react other to form a first pre-metal silicide layer, removing an unreacted portion of the metal layer, and performing a second thermal process on the substrate to change the first pre-metal silicide layer into a second pre-metal silicide layer and then to melt the second pre-metal silicide layer to change the second pre-metal silicide layer into a metal silicide layer.Type: ApplicationFiled: September 23, 2011Publication date: July 12, 2012Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Jin-Bum Kim, Young-Pil Kim, Hyung-Ik Lee, Ki-Hong Kim, Eun-Ha Lee, Jung-Yun Won, Benayad Anass
-
Publication number: 20120171826Abstract: A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.Type: ApplicationFiled: September 23, 2011Publication date: July 5, 2012Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Jin-Bum Kim, Chul-Sung Kim, Yu-Gyun Shin, Dae-Yong Kim, Joon-Gon Lee, Kwang-Young Lee
-
Publication number: 20120135576Abstract: Provided are a semiconductor device and a method of fabricating a semiconductor device. The method includes providing a substrate having a channel region; forming a gate structure, which comprises a dummy gate pattern, on the substrate; forming first and second trenches by recessing the substrate on both sides of the gate structure, respectively; forming a first semiconductor pattern in the first and second trenches; removing the dummy gate pattern to expose a portion of the channel region; forming a recessed channel region by recessing the portion of the channel region; and forming a second semiconductor pattern in the recessed region.Type: ApplicationFiled: September 23, 2011Publication date: May 31, 2012Inventors: Hyun-Jung Lee, Young-Pil Kim, Jin-Bum Kim, Sang-Bom Kang, Kwan-Yong Lim
-
Publication number: 20120083089Abstract: A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.Type: ApplicationFiled: September 22, 2011Publication date: April 5, 2012Inventors: Jin-Bum KIM, Chul-Sung Kim, Sang-Woo Lee, Yu-Gyun Shin
-
Patent number: 8101303Abstract: A rechargeable lithium battery includes a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions; a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions; and an electrolyte including a non-aqueous organic solvent and a lithium salt. The positive electrode has a positive active mass density of 3.65 g/cc or more, and the lithium salt includes lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), and a lithium imide-based compound. The rechargeable lithium battery has high capacity, excellent cycle-life, and reliability at a high temperature.Type: GrantFiled: August 9, 2007Date of Patent: January 24, 2012Assignee: Samsung SDI Co., Ltd.Inventors: Jeom-Soo Kim, Jin-Bum Kim, Yong-Chul Park, Duck-Chul Hwang, Jong-Hwa Lee
-
Publication number: 20120003799Abstract: Methods of manufacturing semiconductor devices may include forming a first layer on a first active region (P-channel FET), forming a second layer on a second active region (N-channel FET), the first and second layers including a silicon germanium (SiGe) epitaxial layer sequentially stacked on a silicon (Si) epitaxial layer, forming a first contact hole in an interlayer insulating film including a first lower region exposing the SiGe epitaxial layer of the first layer, forming a second contact hole in the interlayer insulating film including a second lower region penetrating through the SiGe epitaxial layer of the second layer and exposing the Si epitaxial layer of the second layer, forming a first metal silicide film including germanium (Ge) in the first lower region, forming a second metal silicide film not including Ge in the second lower region simultaneously with the forming of the first metal silicide film.Type: ApplicationFiled: September 8, 2011Publication date: January 5, 2012Inventors: Jin-bum Kim, Si-young Choi, Hyung-Ik Lee, Ki-hong Kim, Yong-koo Kyoung
-
Publication number: 20110306205Abstract: Methods of forming a semiconductor device include providing a substrate having an area including a source and a drain region of a transistor. A nickel (Ni) metal film is formed on the substrate area including the source and the drain region. A first heat-treatment process is performed including heating the substrate including the metal film from a first temperature to a second temperature at a first ramping rate and holding the substrate including the metal film at the second temperature for a first period of time. A second heat-treatment process is then performed including heating the substrate including the metal film from a third temperature to a fourth temperature at a second ramping rate and holding the substrate at the fourth temperature for a second period of time. The fourth temperature is different from the second temperature and the second period of time is different from the first period of time.Type: ApplicationFiled: May 11, 2011Publication date: December 15, 2011Inventors: Byung-Hak Lee, Yu-Gyun Shin, Sang-Woo Lee, Sun-Ghil Lee, Jin-Bum Kim, Joon-Gon Lee
-
Patent number: 8039902Abstract: Semiconductor devices include a substrate having first and second active regions; a P-channel transistor associated with the first active region and including at least one of source and drain regions; an N-channel field-effect transistor associated with the second active region and including at least one of the source and drain regions; first and second contact pad layers each including silicon (Si) and SiGe epitaxial layers on the source and drain regions the SiGe epitaxial layers being sequentially stacked on the Si epitaxial layers; an interlayer insulating film; a first metal silicide film on the SiGe epitaxial layer of the P-channel transistor and a second metal silicide film on the Si epitaxial layer of the N-channel transistor; and contact plugs on the first and second metal silicide films.Type: GrantFiled: November 13, 2009Date of Patent: October 18, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Si-young Choi, Hyung-ik Lee, Ki-hong Kim, Yong-koo Kyoung
-
Publication number: 20110073941Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.Type: ApplicationFiled: December 7, 2010Publication date: March 31, 2011Inventors: Jin Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee