Patents by Inventor Jin-Ping Han

Jin-Ping Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8017472
    Abstract: Semiconductor devices and methods of manufacturing thereof are disclosed. Isolation regions are formed that include a stress-altering material at least partially lining a trench formed within a workpiece. The isolation regions include an insulating material disposed over the stress-altering material.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: September 13, 2011
    Assignees: Infineon Technologies AG, Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jin-Ping Han, Yung Fu (Alfred) Chong
  • Publication number: 20110175148
    Abstract: Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Inventors: Jiang Yan, Roland Hampp, Jin-Ping Han, Manfred Eller, Alois Gutmann
  • Publication number: 20110175174
    Abstract: A semiconductor device includes a semiconductor body of a first semiconductive material. A transistor is disposed in the semiconductor body. The transistor includes source and drain regions of a second semiconductive material embedded in the semiconductor body. A resistor overlies a top surface of the semiconductor body and is laterally spaced from the transistor. The resistor is formed from the second semiconductive material.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 21, 2011
    Applicant: Infineon Technologies AG
    Inventors: Knut Stahrenberg, Jin-Ping Han
  • Publication number: 20110169096
    Abstract: An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FREESCALE SEMICONDUCTOR, INC., INFINEON TECHNOLOGIES NORTH AMERICA CORP., CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Xiangdong Chen, Weipeng Li, Anda C. Mocuta, Dae-Gyu Park, Melanie J. Sherony, Kenneth J. Stein, Haizhou Yin, Franck Arnaud, Jin-Ping Han, Laegu Kang, Yong Meng Lee, Young Way Teh, Voon-Yew Thean, Da Zhang
  • Patent number: 7955936
    Abstract: A method for fabricating a semiconductor device includes forming an SiGe region. The SiGe region can be an embedded source and drain region, or a compressive SiGe channel layer, or other SiGe regions within a semiconductor device. The SiGe region is exposed to an SC1 solution and excess surface portions of the SiGe region are selectively removed. The SC1 etching process can be part of a rework method in which overgrowth regions of SiGe are selectively removed by exposing the SiGe to and SC1 solution maintained at an elevated temperature. The etching process is carried out for a period of time sufficient to remove excess surface portions of SiGe. The SC1 etching process can be carried out at elevated temperatures ranging from about 25° C. to about 65° C.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: June 7, 2011
    Assignees: Chartered Semiconductor Manufacturing Ltd., International Business Machines Corporation, Infineon Technologies North America Corp., Infineon Technologies North America Corp.
    Inventors: Yong Siang Tan, Chung Woh Lai, Jin-Ping Han, Henry K. Utomo, Judson R. Holt, Eric Harley, Richard O. Henry, Richard J. Murphy
  • Patent number: 7951664
    Abstract: Methods of manufacturing resistors, methods of manufacturing semiconductor devices, and structures thereof are disclosed. In one embodiment, a method of fabricating a resistor includes forming a transistor material stack over a workpiece and patterning the transistor material stack, forming a gate of a transistor in a first region of the workpiece and leaving a portion of the transistor material stack in a second region of the workpiece. A top portion of the transistor material stack is removed in the second region, and a top portion of the workpiece is removed in the first region proximate the gate of the transistor, forming recessed regions in the workpiece in the first region. A semiconductive material is formed in the recessed regions of the workpiece in the first region and over a portion of the transistor material stack in the second region, forming a resistor in the second region.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: May 31, 2011
    Assignee: Infineon Technologies AG
    Inventors: Knut Stahrenberg, Jin-Ping Han
  • Patent number: 7947606
    Abstract: Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 24, 2011
    Assignee: Infineon Technologies AG
    Inventors: Jiang Yan, Roland Hampp, Jin-Ping Han, Manfred Eller, Alois Gutmann
  • Patent number: 7935593
    Abstract: Embodiments of the present disclosure provide stress optimization during manufacturing of dual embedded epitaxially grown (EPI) semiconductor structures using just two masks, such as nFET and pFET open for embedded epitaxial using SiC and SiGe, and separated halo implantation masks for both horizontal and vertical PC
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 3, 2011
    Assignees: Samsung Electronics Co., Ltd., International Business Machines Corporation, Chartered Semiconductor Manufacturing Ltd., Infineon Technologies AG
    Inventors: Jong Ho Yang, Jin-Ping Han, Chung Woh Lai, Henry Utomo
  • Patent number: 7892939
    Abstract: The prevention of active area loss in the STI model is disclosed which results in an improved device performance in devices manufactured according to the process flow. The process generally shared among the multiple various embodiments inverts the current conventional STI structure towards a process flow where an insulator is patterned with tapered trenches. A segregation layer is formed beneath the surface of the insulator in the tapered trenches. The tapered trenches are then filled with a semiconductor material which is further processed to create a number of active devices. Therefore, the active devices are created in patterned dielectric instead of the STI being created in the semiconductor substrate of the active devices.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: February 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Roland Hampp, Manfred Eller, Jin-Ping Han, Matthias Lipinski
  • Patent number: 7893502
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 22, 2011
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies AG
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Publication number: 20110006373
    Abstract: Methods of fabricating transistors and semiconductor devices and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, forming a gate over the gate dielectric, and forming a stress-inducing material over the gate, the gate dielectric, and the workpiece. Sidewall spacers are formed from the stress-inducing material on sidewalls of the gate and the gate dielectric.
    Type: Application
    Filed: September 17, 2010
    Publication date: January 13, 2011
    Inventors: Manfred Eller, Jiang Yan, Jin-Ping Han, Alois Gutmann
  • Publication number: 20100308330
    Abstract: Methods of manufacturing resistors, methods of manufacturing semiconductor devices, and structures thereof are disclosed. In one embodiment, a method of fabricating a resistor includes forming a transistor material stack over a workpiece and patterning the transistor material stack, forming a gate of a transistor in a first region of the workpiece and leaving a portion of the transistor material stack in a second region of the workpiece. A top portion of the transistor material stack is removed in the second region, and a top portion of the workpiece is removed in the first region proximate the gate of the transistor, forming recessed regions in the workpiece in the first region. A semiconductive material is formed in the recessed regions of the workpiece in the first region and over a portion of the transistor material stack in the second region, forming a resistor in the second region.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Inventors: Knut Stahrenberg, Jin-Ping Han
  • Publication number: 20100308418
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a first transistor having a gate dielectric and a cap layer disposed over the gate dielectric. The first transistor includes a gate including a metal layer disposed over the cap layer and a semiconductive material disposed over the metal layer. The semiconductor device includes a second transistor in a second region of the workpiece, which includes the gate dielectric and the cap layer disposed over the gate dielectric. The second transistor includes a gate that includes the metal layer disposed over the cap layer and the semiconductive material disposed over the metal layer. A thickness of the metal layer, a thickness of the semiconductive material, an implantation region of a channel region, or a doped region of the gate dielectric of the first transistor achieves a predetermined threshold voltage for the first transistor.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 9, 2010
    Inventors: Knut Stahrenberg, Roland Hampp, Jin-Ping Han, Klaus von Arnim
  • Patent number: 7842592
    Abstract: There is disclosed a method of applying stress to a channel region underneath a gate of a field-effect-transistor, which includes the gate, a source region, and a drain region. The method includes steps of embedding stressors in the source and drain regions of the FET; forming a stress liner covering the gate and the source and drain regions; removing a portion of the stress liner, the portion of the stress liner being located on top of the gate of the FET; removing at least a substantial portion of the gate of a first gate material and thus creating an opening therein; and filling the opening with a second gate material.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: November 30, 2010
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Thomas Dyer, Rajendran Krishnasamy, Jin-Ping Han, Ernst Demm
  • Publication number: 20100297818
    Abstract: In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
    Type: Application
    Filed: August 4, 2010
    Publication date: November 25, 2010
    Inventors: Jin-Ping Han, Alois Gutmann, Roman Knoefler, Jiang Yan, Chris Stapelmann, Jingyu Lian, Yung Fu Chong
  • Patent number: 7838372
    Abstract: Methods of manufacturing semiconductor devices and structures thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming recesses in a first region and a second region of a workpiece. The first region of the workpiece is masked, and the recesses in the second region of the workpiece are filled with a first semiconductive material. The second region of the workpiece is masked, and the recesses in the first region of the workpiece are filled with a second semiconductive material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: November 23, 2010
    Assignees: Infineon Technologies AG, Chartered Semiconductor Manufacturing, Ltd., International Business Machines Corporation, Samsung Electronics Co., Ltd.
    Inventors: Jin-Ping Han, Jong Ho Yang, Chung Woh Lai, Henry Utomo
  • Publication number: 20100289088
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicants: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies North America Corp.
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Patent number: 7820518
    Abstract: Methods of fabricating transistors and semiconductor devices and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, forming a gate over the gate dielectric, and forming a stress-inducing material over the gate, the gate dielectric, and the workpiece. Sidewall spacers are formed from the stress-inducing material on sidewalls of the gate and the gate dielectric.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 26, 2010
    Assignee: Infineon Technologies AG
    Inventors: Manfred Eller, Jiang Yan, Jin-Ping Han, Alois Gutmann
  • Patent number: 7800182
    Abstract: In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: September 21, 2010
    Assignees: Infineon Technologies AG, Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jin-Ping Han, Alois Gutmann, Roman Knoefler, Jiang Yan, Chris Stapelmann, Jingyu Lian, Yung Fu Chong
  • Patent number: 7795107
    Abstract: A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Roland Hampp, Alois Gutmann, Jin-Ping Han, O Sung Kwon