Patents by Inventor Jinchun Hu

Jinchun Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150077032
    Abstract: A single degree of freedom vibration isolating device of a linear motor and a motion control method thereof. The vibration isolating device comprises a balance block, an anti-drifting driving unit, and a control unit. An upper surface of the balance block is connected to a stator of the linear motor, and a lower surface of the balance block is connected to a base. The anti-drifting driving unit is connected to the balance block for controlling the position of the balance block. Provided two motion control methods; inputting a second grating ruler signal to the control unit as feedback to perform variable stiffness and nonlinear control on the balance block; inputting a first and a second grating ruler signal to the control unit as feedback to obtain resultant centroid displacement signals of the rotor and the balance block to perform nonlinear anti-drifting control on the balance block.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 19, 2015
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Kaiming Yang, Yu Zhu, Dongdong Yu, Rong Cheng, Ming Zhang, Xin Li, Haihua Mu, Jinchun Hu, Dengfeng Xu, Wensheng Yin, Guofeng Ji
  • Patent number: 8958078
    Abstract: A two-dimensional, position-sensitive sensor-based system for positioning an object having six degrees of freedom in space, used for positioning of a silicon table and mask table of a lithography machine. The system comprises mainly a semiconductor laser 1, an optical fiber collimator 2, optical fibers 3, 7, 10, and 13, an optical fiber splitter 4, filter plates 6, 9, and 12, three PSD sensors 5, 8, and 11, and a signal processing system. Laser emitted by the semiconductor laser 1 is irradiated onto the optical fiber collimator 2, then transmitted respectively via three paths, and received by the PSD sensors 5, 8, and 11 after having background light filtered out by the filter plates 6, 9, and 12, while the positions of laser spots on the three PSD sensors 5, 8, and 11 are processed by the signal processing system to acquire the position and orientation.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 17, 2015
    Assignee: Tsinghua University
    Inventors: Ming Zhang, Yu Zhu, Zhao Liu, Jinchun Hu, Dengfeng Xu, Kaiming Yang, Wensheng Yin, Haihua Mu
  • Publication number: 20150012242
    Abstract: A planar motor rotor displacement measuring device and its measuring method are provided. The motor is a moving-coil type planar motor. The device comprises probes, two sets of sine sensors, two sets of cosine sensors, a signal lead wire and a signal processing circuit. The method is arranging two sets of magnetic flux density sensors within a magnetic field pitch ? along two vertical movement directions in the rotor located in the sine magnetic field area. Sampled signals of the four sets of sensors are respectively processed with a frequency multiplication operation, four subdivision signals are obtained, the zero-crossing points of the four subdivision signals are detected, and then two sets of orthogonal pulse signals are generated. The pulse number of the orthogonal pulse signals is counted, and phase difference of the two sets of orthogonal pulse signals is respectively detected.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 8, 2015
    Inventors: Jinchun Hu, Yu Zhu, Wensheng Yin, Longmin Chen, Kaiming Yang, Ming Zhang, Dengfeng Xu, Haihua Mu, Chuxiong Hu, Zhao Liu
  • Patent number: 8860927
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (13) operating in an exposure workstation (3) and a silicon chip (14) stage operating in a pre-processing workstation (4). The two silicon chip stages (13, 14) are provided on the same base stage (1), and suspended on an upper surface (2) of the base stage by air bearings. The two silicon chip stages (13, 14) can move along guide rails (15, 16) in the Y direction. One end of each guide rail (15, 16) is connected to a main driving unit (11, 12), and the other end of each guide rail (15, 16) is butt-jointed with an X-direction single-freedom auxiliary driving unit (7, 8). The silicon chip stages (13, 14) are driven by the single-freedom auxiliary driving units (7, 8) cooperated with the main driving units (11, 12) to move along the X direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 14, 2014
    Assignee: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Patent number: 8836918
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (10) operating in an exposure workstation (6) and a silicon chip stage (12) operating in a pre-processing workstation (7). Each silicon chip stage (10, 12) is supported by a six-freedom micro-motion stage, respectively. The silicon chip stage (10, 12) and the six-freedom micro-motion stage form a silicon chip stage group. The two silicon chip stage groups are provided on the same rectangular base stage (1) and suspended on an upper surface (2) of the base sage by air bearings. A double-freedom driving unit (21a, 21b, 22a, 22b) is provided on each edge of the base stage (1), respectively. The six-freedom micro-motion stage of the silicon chip stage group has an upper layer driver and a lower layer driver, capable of achieving six-freedom control.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: September 16, 2014
    Assignee: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Publication number: 20140160495
    Abstract: A two-dimensional, position-sensitive sensor-based system for positioning an object having six degrees of freedom in space, used for positioning of a silicon table and mask table of a lithography machine. The system comprises mainly a semiconductor laser 1, an optical fiber collimator 2, optical fibers 3, 7, 10, and 13, an optical fiber splitter 4, filter plates 6, 9, and 12, three PSD sensors 5, 8, and 11, and a signal processing system. Laser emitted by the semiconductor laser 1 is irradiated onto the optical fiber collimator 2, then transmitted respectively via three paths, and received by the PSD sensors 5, 8, and 11 after having background light filtered out by the filter plates 6, 9, and 12, while the positions of laser spots on the three PSD sensors 5, 8, and 11 are processed by the signal processing system to acquire the position and orientation.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 12, 2014
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Ming Zhang, Yu Zhu, Zhao Liu, Jinchun Hu, Dengfeng Xu, Kaiming Yang, Wensheng Yin, Haihua Mu
  • Patent number: 8599361
    Abstract: A nanometer precision six-DOF magnetic suspension micro-stage and the application thereof are provided which are mainly used in semiconductor photolithography devices. The micro-stage includes a cross support and four two-DOF actuators. Each 2-DOF actuator comprises a vertically polarized permanent magnet, a horizontal force coil and a vertical force coil; the permanent magnet being mounted on an end of the cross support, the horizontal force coil and the vertical force coil being arranged on a side of and below the permanent magnet respectively and being spaced apart from the permanent magnet; the cross support and four vertically polarized permanent magnets constitute a mover of the micro-stage; the horizontal force coil and the vertical force coil being fixed by a coil framework respectively and constituting a stator of the micro-stage; and the stator being mounted on a base of the micro-stage.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: December 3, 2013
    Assignee: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Guang Li, Jinsong Wang, Jinchun Hu, Wensheng Yin, Kaiming Yang, Li Zhang, Jing Ma, Yan Xu, Yujie Li, Li Tian, Guanghong Duan
  • Publication number: 20130038853
    Abstract: A nanometer precision six-DOF magnetic suspension micro-stage and the application thereof are provided which are mainly used in semiconductor photolithography devices. The micro-stage includes a cross support and four two-DOF actuators. Each 2-DOF actuator comprises a vertically polarized permanent magnet, a horizontal force coil and a vertical force coil; the permanent magnet being mounted on an end of the cross support, the horizontal force coil and the vertical force coil being arranged on a side of and below the permanent magnet respectively and being spaced apart from the permanent magnet; the cross support and four vertically polarized permanent magnets constitute a mover of the micro-stage; the horizontal force coil and the vertical force coil being fixed by a coil framework respectively and constituting a stator of the micro-stage; and the stator being mounted on a base of the micro-stage.
    Type: Application
    Filed: March 15, 2011
    Publication date: February 14, 2013
    Inventors: Yu Zhu, Ming Zhang, Guang Li, Jinsong Wang, Jinchun Hu, Wensheng Yin, Kaiming Yang, Li Zhang, Jing Ma, Yan Xu, Yujie Li, Li Tian, Guanghong Duan
  • Publication number: 20130024157
    Abstract: A two-dimensional locating method of a motion platform based on a magnetic steel array involves the following steps: placing more than four linear Hall sensors at any different positions within one or more polar distances of the magnetic steel array on the surface of the motion platform in a motion system; determining a magnetic flux density distribution model according to the magnetic steel array; determining the mounting positions of the above-mentioned linear Hall sensors, which are converted into phases with respect to the mass center of the motion platform; recording the magnetic flux density measured values of the linear Hall sensors as the motion proceeds; solving the phases of the mass center of the motion platform in a plane, with the measured values being served as observed quantities and the magnetic flux density distribution model being served as a computation model; and determining the position of the mass center of the motion platform with respect to an initial phase according to the phase, so a
    Type: Application
    Filed: January 18, 2011
    Publication date: January 24, 2013
    Inventors: Jinchun Hu, Yu Zhu, Jinsong Wang, Ming Zhang, Kai Liao, Kaiming Yang, Dengfeng Xu, Wensheng Yin, Guanghong Duan
  • Publication number: 20120127448
    Abstract: A dual wafer stage exchanging system for a lithographic device is disclosed, said system comprises two wafer stages running between an exposure workstation and a pre-processing workstation, and said two stages are set on a base and suspended above the upper surface of the base by air bearings. Each wafer stages is passed through by a Y-direction guide rail respectively, wherein one end of said guide rail is connected with a main driving unit and another end of said guide rail is detachably coupled with one of the two X-direction auxiliary driving units with single degree of freedom, and said two wafer stages are capable of moving in Y-direction along the guide rails and moving in X-direction under the drive of the auxiliary driving units with single degree of freedom. The position exchange of said two wafer stages can be enabled by the detachment and connection of the Y-direction guide rails and the auxiliary units with single degree of freedom.
    Type: Application
    Filed: May 25, 2010
    Publication date: May 24, 2012
    Applicant: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Publication number: 20120099094
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (10) operating in an exposure workstation (6) and a silicon chip stage (12) operating in a pre-processing workstation (7). Each silicon chip stage (10, 12) is supported by a six-freedom micro-motion stage, respectively. The silicon chip stage (10, 12) and the six-freedom micro-motion stage form a silicon chip stage group. The two silicon chip stage groups are provided on the same rectangular base stage (1) and suspended on an upper surface (2) of the base sage by air bearings. A double-freedom driving unit (21a, 21b, 22a, 22b) is provided on each edge of the base stage (1), respectively. The six-freedom micro-motion stage of the silicon chip stage group has an upper layer driver and a lower layer driver, capable of achieving six-freedom control.
    Type: Application
    Filed: April 2, 2010
    Publication date: April 26, 2012
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Publication number: 20120099095
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (13) operating in an exposure workstation (3) and a silicon chip (14) stage operating in a pre-processing workstation (4). The two silicon chip stages (13, 14) are provided on the same base stage (1), and suspended on an upper surface (2) of the base stage by air bearings. The two silicon chip stages (13, 14) can move along guide rails (15, 16) in the Y direction. One end of each guide rail (15, 16) is connected to a main driving unit (11, 12), and the other end of each guide rail (15, 16) is butt-jointed with an X-direction single-freedom auxiliary driving unit (7, 8). The silicon chip stages (13, 14) are driven by the single-freedom auxiliary driving units (7, 8) cooperated with the main driving units (11, 12) to move along the X direction.
    Type: Application
    Filed: April 2, 2010
    Publication date: April 26, 2012
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu