Patents by Inventor Jinjun Shi
Jinjun Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8906381Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising such nanocarriers. The present invention provides methods of designing, manufacturing, and using such nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: December 9, 2014Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., President and Fellows of Harvard CollegeInventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Patent number: 8728679Abstract: An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite.Type: GrantFiled: May 29, 2007Date of Patent: May 20, 2014Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
-
Publication number: 20140127301Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: November 19, 2013Publication date: May 8, 2014Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8691441Abstract: A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 ?m (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10?4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.Type: GrantFiled: September 7, 2010Date of Patent: April 8, 2014Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Ming C. Wang, Bor Z. Jang
-
Patent number: 8691129Abstract: A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications.Type: GrantFiled: May 8, 2007Date of Patent: April 8, 2014Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
-
Publication number: 20140037736Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 4, 2013Publication date: February 6, 2014Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich H. von Andrian, Elena Tonti
-
Patent number: 8637028Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: January 28, 2014Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Women's HospitalInventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Publication number: 20130315831Abstract: A particle includes an aqueous core; a first amphiphilic layer surrounding the aqueous core; and a polymeric matrix surrounding the first amphiphilic layer.Type: ApplicationFiled: September 2, 2011Publication date: November 28, 2013Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.Inventors: Jinjun Shi, Zeyu Xiao, Cristian Vilos, Alexander Votruba, Robert S. Langer, Omid C. Farokhzad
-
Patent number: 8591905Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface having a plurality of nicotine moieties. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof. For example, the present invention nanocarriers capable of eliciting an immune response and the production of anti-nicotine antibodies.Type: GrantFiled: April 22, 2009Date of Patent: November 26, 2013Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Massachusetts Institute of TechnologyInventors: Ulrich von Andrian, Omid C. Farokhzad, Frank Alexis, Matteo Iannacone, Pamela Basto, Jinjun Shi, Elliott Ashley Moseman, Robert S. Langer, Elena Tonti
-
Patent number: 8580432Abstract: A solid nanocomposite particle composition for lithium metal or lithium ion battery electrode applications. The composition comprises: (A) an electrode active material in a form of fine particles, rods, wires, fibers, or tubes with a dimension smaller than 1 ?m; (B) nano graphene platelets (NGPs); and (C) a protective matrix material reinforced by the NGPs; wherein the graphene platelets and the electrode active material are dispersed in the matrix material and the NGPs occupy a weight fraction wg of 1% to 90% of the total nanocomposite weight, the electrode active material occupies a weight fraction wa of 1% to 90% of the total nanocomposite weight, and the matrix material occupies a weight fraction wm of at least 2% of the total nanocomposite weight with wg+wa+wm=1. For a lithium ion battery anode application, the matrix material is preferably amorphous carbon, polymeric carbon, or meso-phase carbon. Such a solid nanocomposite composition provides a high anode capacity and good cycling stability.Type: GrantFiled: December 4, 2008Date of Patent: November 12, 2013Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang, Jinjun Shi
-
Patent number: 8562998Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising nanocarriers. The present invention provides methods of designing, manufacturing, and using nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: October 22, 2013Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Patent number: 8501307Abstract: This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm3 to about 2.0 g/cm3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.Type: GrantFiled: September 4, 2007Date of Patent: August 6, 2013Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
-
Publication number: 20130129790Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 12, 2012Publication date: May 23, 2013Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich Von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8343497Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: January 1, 2013Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Massachusetts Institute of TechnologyInventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Patent number: 8343498Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: January 1, 2013Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., President and Fellows of Harvard CollegeInventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8277812Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: October 2, 2012Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20120087890Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising such nanocarriers. The present invention provides methods of designing, manufacturing maceutical compositions thereof.Type: ApplicationFiled: October 9, 2009Publication date: April 12, 2012Applicant: Massachusetts Institute of TechnologyInventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20120064409Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.Type: ApplicationFiled: September 10, 2010Publication date: March 15, 2012Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Patent number: 8132746Abstract: A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650° C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.Type: GrantFiled: April 17, 2007Date of Patent: March 13, 2012Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
-
Publication number: 20120058397Abstract: A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 ?m (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10?4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.Type: ApplicationFiled: September 7, 2010Publication date: March 8, 2012Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Ming C. Wang, Bor Z. Jang