Patents by Inventor Jinrui GUO

Jinrui GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210180183
    Abstract: Embodiments of the present disclosure generally relate to processing an optical workpiece containing grating structures on a substrate by deposition processes, such as atomic layer deposition (ALD). In one or more embodiments, a method for processing an optical workpiece includes positioning a substrate containing a first layer within a processing chamber, where the first layer contains grating structures separated by trenches formed in the first layer, and each of the grating structures has an initial critical dimension, and depositing a second layer on at least the sidewalls of the grating structures by ALD to produce corrected grating structures separated by the trenches, where each of the corrected grating structures has a corrected critical dimension greater than the initial critical dimension.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Jinrui GUO, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20210028013
    Abstract: Methods for forming a smooth ultra-thin flowable CVD film by using a surface treatment on a substrate surface before flowable CVD film deposition improves the uniformity and overall film smoothness. The flowable CVD film can be cured by any suitable curing process to form a smooth flowable CVD film.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 28, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jinrui Guo, Jingmei Liang, Praket P. Jha, Li Zhang
  • Publication number: 20200332414
    Abstract: Embodiments of the present disclosure generally relate to processing a workpiece containing a substrate during deposition, etching, and/or curing processes with a mask to have localized deposition on the workpiece. A mask is placed on a first layer of a workpiece, which protects a plurality of trenches from deposition of a second layer. In some embodiments, the mask is placed before deposition of the second layer. In other embodiments, the second layer is cured before the mask is deposited. In other embodiments, the second layer is etched after the mask is deposited. Methods disclosed herein allow the deposition of a second layer in some of the trenches present in the workpiece, while at least partially preventing deposition of the second layer in other trenches present in the workpiece.
    Type: Application
    Filed: February 19, 2020
    Publication date: October 22, 2020
    Inventors: Jinrui GUO, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Yongan XU, Jhenghan YANG, Chien-An CHEN
  • Publication number: 20200286773
    Abstract: Embodiments disclosed herein relate to cluster tools for forming and filling trenches in a substrate with a flowable dielectric material. In one or more embodiments, a cluster tool for processing a substrate contains a load lock chamber, a first vacuum transfer chamber coupled to the load lock chamber, a second vacuum transfer chamber, a cooling station disposed between the first vacuum transfer chamber and the second vacuum transfer chamber, a factory interface coupled to the load lock chamber, a plurality of first processing chambers coupled to the first vacuum transfer chamber, wherein each of the first processing chambers is a deposition chamber capable of performing a flowable layer deposition, and a plurality of second processing chambers coupled to the second vacuum transfer chamber, wherein each of the second processing chambers is a plasma chamber capable of performing a plasma curing process.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Jingmei LIANG, Yong SUN, Jinrui GUO, Praket P. JHA, Jung Chan LEE, Tza-Jing GUNG, Mukund SRINIVASAN
  • Publication number: 20200266052
    Abstract: Aspects of the disclosure provide a method including depositing an underlayer comprising silicon oxide over a substrate, depositing a polysilicon liner on the underlayer, and depositing an amorphous silicon layer on the polysilicon liner. Aspects of the disclosure provide a device intermediate including a substrate, an underlayer comprising silicon oxide formed over the substrate, a polysilicon liner disposed on the underlayer, and an amorphous silicon layer disposed on the polysilicon liner.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 20, 2020
    Inventors: Krishna NITTALA, Rui CHENG, Karthik JANAKIRAMAN, Praket Prakash JHA, Jinrui GUO, Jingmei LIANG
  • Patent number: 10707116
    Abstract: Implementations disclosed herein relate to methods for forming and filling trenches in a substrate with a flowable dielectric material. In one implementation, the method includes subjecting a substrate having at least one trench to a deposition process to form a flowable layer over a bottom surface and sidewall surfaces of the trench in a bottom-up fashion until the flowable layer reaches a predetermined deposition thickness, subjecting the flowable layer to a first curing process, the first curing process being a UV curing process, subjecting the UV cured flowable layer to a second curing process, the second curing process being a plasma or plasma-assisted process, and performing sequentially and repeatedly the deposition process, the first curing process, and the second curing process until the plasma cured flowable layer fills the trench and reaches a predetermined height over a top surface of the trench.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jingmei Liang, Yong Sun, Jinrui Guo, Praket P. Jha, Jung Chan Lee, Tza-Jing Gung, Mukund Srinivasan
  • Publication number: 20190233940
    Abstract: Embodiments herein provide for radical based treatment of silicon nitride layers deposited using a flowable chemical vapor deposition (FCVD) process. Radical based treatment of the FCVD deposited silicon nitride layers desirably increases the number of stable Si—N bonds therein, removes undesirably hydrogen impurities therefrom, and desirably provides for further crosslinking, densification, and nitridation (nitrogen incorporation) in the resulting silicon nitride layer. In one embodiment, a method of forming a silicon nitride layer includes positioning a substrate on a substrate support disposed in the processing volume of a processing chamber and treating a silicon nitride layer deposited on the substrate. Treating the silicon nitride layer includes flowing one or more radical species of a first gas comprising NH3, N2, H2, Ar, He, or combinations thereof and exposing a silicon nitride layer to the radical species.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 1, 2019
    Inventors: Jinrui GUO, Jingmei LIANG, Praket P. JHA, Tejasvi ASHOK, Tza-Jing GUNG
  • Publication number: 20180330980
    Abstract: Implementations disclosed herein relate to methods for forming and filling trenches in a substrate with a flowable dielectric material. In one implementation, the method includes subjecting a substrate having at least one trench to a deposition process to form a flowable layer over a bottom surface and sidewall surfaces of the trench in a bottom-up fashion until the flowable layer reaches a predetermined deposition thickness, subjecting the flowable layer to a first curing process, the first curing process being a UV curing process, subjecting the UV cured flowable layer to a second curing process, the second curing process being a plasma or plasma-assisted process, and performing sequentially and repeatedly the deposition process, the first curing process, and the second curing process until the plasma cured flowable layer fills the trench and reaches a predetermined height over a top surface of the trench.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: Jingmei LIANG, Yong SUN, Jinrui GUO, Praket P. JHA, Jung Chan LEE, Tza-Jing GUNG, Mukund SRINIVASAN
  • Patent number: 10041167
    Abstract: Methods are described for a cyclical deposition and curing process. More particularly, the implementations described herein provide a cyclic sequential deposition and curing process for filling features formed on a substrate. Features are filled to ensure electrical isolation of features in integrated circuits formed on a substrate. The processes described herein use flowable film deposition processes that have been effective in reducing voids or seams produced in features formed on a substrate. However, conventional gap-filling methods using flowable films typically contain dielectric materials that have undesirable physical and electrical properties. In particular, film density is not uniform, film dielectric constant varies across the film thickness, film stability is not ideal, film refractive index is inconsistent, and resistance to dilute hydrofluoric acid (DHF) is not ideal in conventional flowable films.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: August 7, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jingmei Liang, Jung Chan Lee, Jinrui Guo, Mukund Srinivasan
  • Publication number: 20160244879
    Abstract: Methods are described for a cyclical deposition and curing process. More particularly, the implementations described herein provide a cyclic sequential deposition and curing process for filling features formed on a substrate. Features are filled to ensure electrical isolation of features in integrated circuits formed on a substrate. The processes described herein use flowable film deposition processes that have been effective in reducing voids or seams produced in features formed on a substrate. However, conventional gap-filling methods using flowable films typically contain dielectric materials that have undesirable physical and electrical properties. In particular, film density is not uniform, film dielectric constant varies across the film thickness, film stability is not ideal, film refractive index is inconsistent, and resistance to dilute hydrofluoric acid (DHF) is not ideal in conventional flowable films.
    Type: Application
    Filed: January 20, 2016
    Publication date: August 25, 2016
    Inventors: Jingmei LIANG, Jung Chan LEE, Jinrui GUO, Mukund SRINIVASAN