Patents by Inventor Jiong-Ping Lu

Jiong-Ping Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9048180
    Abstract: A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 2, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Periannan Chidambaram, Srinivasan Chakravarthi
  • Patent number: 8835263
    Abstract: A method for forming epitaxial SiGe of a PMOS transistor. In an example embodiment, the method may include providing a semiconductor wafer having a PMOS transistor gate stack, extension sidewalls, source/drain extension regions, and active regions. The method may also include performing a recess etch of the active regions and forming epitaxial SiGe within the recessed active regions by forming a selective epi SiGe region coupled to the surface of the recessed active regions and a selective carbon-doped epitaxial cap layer coupled to the selective epi SiGe region.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: September 16, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Johan Weijtmans, Jiong-Ping Lu, Rick Wise
  • Patent number: 8546259
    Abstract: Semiconductor components are often fabricated that include a nickel silicide layer, e.g., as part of a gate electrode in a transistor component, which may be formed by forming a layer of nickel on a silicon-containing area of the semiconductor substrate, followed by thermally annealing the semiconductor substrate to produce a nickel silicide. However, nickel may tend to diffuse into silicon during the thermal anneal, and may form crystals that undesirably increase the sheet resistance in the transistor. Carbon may be placed with the nickel to serve as a diffusion suppressant and/or to prevent nickel crystal formation during thermal annealing. Methods are disclosed for utilizing this technique, as well as semiconductor components formed in accordance with this technique.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: October 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Juanita DeLoach, Jiong-Ping Lu, Haowen Bu
  • Patent number: 8088659
    Abstract: High dielectric films of mixed transition metal oxides of titanium and tungsten, or titanium and tantalum, are formed by sequential chemical vapor deposition (CVD) of the respective nitrides and annealing in the presence of oxygen to densify and oxidize the nitrides. The resulting film is useful as a capacitative cell and resists oxygen diffusion to the underlying material, has high capacitance and low current leakage.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: January 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jiong-Ping Lu, Ming-Jang Hwang
  • Patent number: 8053296
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the semiconductor device. The semiconductor device, among other elements, includes a recrystallized polysilicon layer 148 located over a gate electrode layer 143, a capacitor 170 located on the recrystallized polysilicon layer 148. The capacitor 170, in this embodiment, includes a first electrode 173, an insulator 175 located over the first electrode 173, and a second electrode 178 located over the insulator 175.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Haowen Bu, Clint Montgomery
  • Patent number: 7994073
    Abstract: A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film. Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 9, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Periannan Chidambaram, Srinivasan Chakravarthi
  • Publication number: 20110151637
    Abstract: An embodiment of the invention is a method of making a transistor by performing an ion implant on a gate electrode layer 110. The method may include forming an interface layer 200 over the semiconductor substrate 20 and performing an anneal to create a silicide 190 on the top surface of the gate electrode 110.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 23, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jiong-Ping Lu, Jiejie Xu
  • Patent number: 7943499
    Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: May 17, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Yaw S. Obeng, Ping Jiang, Joe G. Tran
  • Publication number: 20100317170
    Abstract: An embodiment of the invention is a method of making a transistor by performing an ion implant on a gate electrode layer 110. The method may include forming an interface layer 200 over the semiconductor substrate 20 and performing an anneal to create a silicide 190 on the top surface of the gate electrode 110.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 16, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Jiejie Xu
  • Publication number: 20100227450
    Abstract: High dielectric films of mixed transition metal oxides of titanium and tungsten, or titanium and tantalum, are formed by sequential chemical vapor deposition (CVD) of the respective nitrides and annealing in the presence of oxygen to densify and oxidize the nitrides. The resulting film is useful as a capacitative cell and resists oxygen diffusion to the underlying material, has high capacitance and low current leakage.
    Type: Application
    Filed: April 28, 2010
    Publication date: September 9, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jiong-Ping Lu, Ming-Jang Hwang
  • Publication number: 20100159665
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the semiconductor device. The semiconductor device, among other elements, includes a recrystallized polysilicon layer 148 located over a gate electrode layer 143, a capacitor 170 located on the recrystallized polysilicon layer 148. The capacitor 170, in this embodiment, includes a first electrode 173, an insulator 175 located over the first electrode 173, and a second electrode 178 located over the insulator 175.
    Type: Application
    Filed: June 4, 2009
    Publication date: June 24, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jiong-Ping Lu, Haowen Bu, Clint Montgomery
  • Patent number: 7732312
    Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: June 8, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Yaw S. Obeng, Ping Jiang, Joe G. Tran
  • Patent number: 7732313
    Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 8, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Yaw S. Obeng, Ping Jiang, Joe G. Tran
  • Patent number: 7732852
    Abstract: High dielectric films of mixed transition metal oxides of titanium and tungsten, or titanium and tantalum, are formed by sequential chemical vapor deposition (CVD) of the respective nitrides and annealing in the presence of oxygen to densify and oxidize the nitrides. The resulting film is useful as a capacitative cell and resists oxygen diffusion to the underlying material, has high capacitance and low current leakage.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 8, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Jiong-Ping Lu, Ming-Jang Hwang
  • Patent number: 7666729
    Abstract: An embodiment of the invention is a method of making a transistor by performing an ion implant on a gate electrode layer 110. The method may include forming an interface layer 200 over the semiconductor substrate 20 and performing an anneal to create a silicide 190 on the top surface of the gate electrode 110.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: February 23, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Jiejie Xu
  • Publication number: 20100041231
    Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Yaw S. Obeng, Ping Jiang, Joe G. Tran
  • Patent number: 7655555
    Abstract: A copper interconnect having a transition metal-silicon-nitride barrier (106). A transition metal-nitride is co-deposited with Si by reactive sputtering in a Si containing ambient to form barrier (106). The copper (110) is then deposited over the transition metal-silicon-nitride barrier (108) with good adhesion.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Faust, Qing-Tang Jiang, Jiong-Ping Lu
  • Patent number: 7585738
    Abstract: A method of forming a fully silicided semiconductor device with independent gate and source/drain doping and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a substrate (the gate stack comprising a polysilicon layer and a blocking layer), and performing an ion implantation into an active region of the substrate adjacent to the gate stack (the blocking layer substantially blocks the ion implantation from the polysilicon layer).
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: September 8, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shaofeng Yu, Freidoon Mehrad, Jiong-Ping Lu
  • Patent number: 7544987
    Abstract: High dielectric films of mixed transition metal oxides of titanium and tungsten, or titanium and tantalum, are formed by sequential chemical vapor deposition (CVD) of the respective nitrides and annealing in the presence of oxygen to densify and oxidize the nitrides. The resulting film is useful as a capacitative cell and resists oxygen diffusion to the underlying material, has high capacitance and low current leakage.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jiong-Ping Lu, Ming-Jang Hwang
  • Publication number: 20090111224
    Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.
    Type: Application
    Filed: January 5, 2009
    Publication date: April 30, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Yew S. Obeng, Ping Jiang, Joe G. Tran