Patents by Inventor Jiro Yugami

Jiro Yugami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7855134
    Abstract: Provided is a highly reliable semiconductor device equipped with a plurality of semiconductor elements having desired properties, respectively; and a manufacturing method facilitating the manufacture of the semiconductor device. The semiconductor device is manufactured by forming a gate-electrode metal film having a thickness of from 3 to 30 nm over the entire upper surface of a gate insulating film; forming an n-side cap layer having a thickness of 10 nm or less over the entire upper surface of a portion of the gate-electrode metal film belonging to an nFET region by using a material different from that of the gate-electrode metal film; and carrying out heat treatment over the n-side cap layer to diffuse the material of the n-side cap layer into the gate-electrode metal film immediately below the n-side cap layer and react them to form an n-side gate-electrode metal film in a nFET region. A poly-Si layer is then deposited, followed by gate electrode processing.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: December 21, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Shinsuke Sakashita, Takaaki Kawahara, Jiro Yugami
  • Publication number: 20100279496
    Abstract: To improve productivity and performance of a CMISFET including a high-dielectric-constant gate insulating film and a metal gate electrode. An Hf-containing insulating film for a gate insulating film is formed over the main surface of a semiconductor substrate. A metal nitride film is formed on the insulating film. The metal nitride film in an nMIS formation region where an n-channel MISFET is to be formed is selectively removed by wet etching using a photoresist pattern on the metal nitride films a mask. Then, a threshold adjustment film containing a rare-earth element is formed. The Hf-containing insulating film in the nMIS formation region reacts with the threshold adjustment film by heat treatment. The Hf-containing insulating film in a pMIS formation region where a p-channel MISFET is to be formed does not react with the threshold adjustment film because of the existence of the metal nitride film.
    Type: Application
    Filed: April 6, 2010
    Publication date: November 4, 2010
    Inventors: Masaru KADOSHIMA, Shinsuke Sakashita, Takaaki Kawahara, Jiro Yugami
  • Patent number: 7741201
    Abstract: The semiconductor device includes a semiconductor substrate, a gate insulating film formed in contact with an upper side of the semiconductor substrate, and a gate electrode formed on the upper side of the gate insulating film and made of metal nitride or metal nitride silicide. A buffer layer for preventing diffusion of nitrogen and silicon is interposed between the gate insulating film and the gate electrode. Preferably, the buffer layer has a thickness of 5 nm or less. In the case where gate electrode contains Ti elements, and the gate insulating film contains Hf elements, the buffer layer preferably contains a titanium film.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: June 22, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Jiro Yugami, Masao Inoue, Kenichi Mori, Shinsuke Sakashita
  • Publication number: 20100102395
    Abstract: Provided is a semiconductor device capable of having a single metal/dual high-k structure with a good shape and having flat band voltages suited for nMOS and pMOS, respectively. The semiconductor device according to the one embodiment of the present invention has a first conductivity type MOSFET and a second conductivity type MOSFET. The first and second conductivity type MOSFETs are each equipped with a first insulating film formed over a semiconductor substrate, a second insulating film formed over the first insulating film and made of an insulating material having a higher dielectric constant than the first insulating film, and a gate electrode formed over the second insulating film and having, as a lower layer of the gate electrode, a metal layer containing a material which diffuses into the second insulating film to control a work function thereof.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 29, 2010
    Inventors: Yoshiki Yamamoto, Yukio Nishida, Jiro Yugami
  • Publication number: 20090263945
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 22, 2009
    Applicant: Renesas Technology Corp.,
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Publication number: 20090218634
    Abstract: Provided is a highly reliable semiconductor device equipped with a plurality of semiconductor elements having desired properties, respectively; and a manufacturing method facilitating the manufacture of the semiconductor device. The semiconductor device is manufactured by forming a gate-electrode metal film having a thickness of from 3 to 30 nm over the entire upper surface of a gate insulating film; forming an n-side cap layer having a thickness of 10 nm or less over the entire upper surface of a portion of the gate-electrode metal film belonging to an nFET region by using a material different from that of the gate-electrode metal film; and carrying out heat treatment over the n-side cap layer to diffuse the material of the n-side cap layer into the gate-electrode metal film immediately below the n-side cap layer and react them to form an n-side gate-electrode metal film in a nFET region. A poly-Si layer is then deposited, followed by gate electrode processing.
    Type: Application
    Filed: January 15, 2009
    Publication date: September 3, 2009
    Inventors: Shinsuke Sakashita, Takaaki Kawahara, Jiro Yugami
  • Patent number: 7569890
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 4, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Patent number: 7537987
    Abstract: In a semiconductor device manufacturing method of the invention, a metal film, for forming a gate electrode, is formed on a gate insulating film. Subsequently, when the metal film is processed, part of the metal film is removed by a wet etching process using a given chemical liquid.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 26, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masahiko Higashi, Satoshi Kume, Jiro Yugami, Shinichi Yamanari, Takahiro Maruyama, Itaru Kanno
  • Publication number: 20080308869
    Abstract: The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered. The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
    Type: Application
    Filed: August 20, 2008
    Publication date: December 18, 2008
    Applicant: Renesas Technology Corp.
    Inventors: Hidekazu ODA, Takahisa Eimori, Jiro Yugami, Takahiro Maruyama, Tomohiro Yamashita, Yukio Nishida, Shinichi Yamanari, Takashi Hayashi, Kenichi Mori
  • Publication number: 20080121999
    Abstract: The present invention offers the semiconductor device which can solve each problem, such as Fermi level pinning, formation of gate electrode depletion, and a diffusion phenomenon, can adopt a material suitable for each gate electrode of the MOS structure from which threshold voltage differs, and can adjust (control) threshold voltage appropriately by the manufacturing process simplified more and which has a MOS structure. In the semiconductor device which has a MOS structure concerning the present invention, a PMOS transistor has the structure in which the gate insulating film, first metal layer, second metal layer, and polysilicon layer was formed in the order concerned. An NMOS transistor has the structure by which a gate insulating film and polysilicon were formed in the order concerned.
    Type: Application
    Filed: July 2, 2007
    Publication date: May 29, 2008
    Applicant: Renesas Technology Corp.
    Inventors: Takaaki KAWAHARA, Shinsuke Sakashita, Jiro Yugami
  • Publication number: 20070099406
    Abstract: In a semiconductor device manufacturing method of the invention, a metal film, for forming a gate electrode, is formed on a gate insulating film. Subsequently, when the metal film is processed, part of the metal film is removed by a wet etching process using a given chemical liquid.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 3, 2007
    Applicant: Renesas Technology Corp.
    Inventors: Masahiko Higashi, Satoshi Kume, Jiro Yugami, Shinichi Yamanari, Takahiro Maruyama, Itaru Kanno
  • Patent number: 7196384
    Abstract: A semiconductor device and a method for manufacturing the same of forming a silicon nitride film selectively without giving damages or contaminations to a surface of the silicon substrate thereby forming different types of gate dielectrics in one identical silicon substrate, are obtained by forming a silicon dioxide on the surface of a silicon substrate, then removing a portion thereof, forming a silicon nitride film to the surface of the substrate from which the silicon dioxide has been removed and, simultaneously, introducing nitrogen to the surface of the silicon dioxide which is left not being removed or, alternatively, depositing a silicon dioxide on the surface of the silicon substrate by chemical vapor deposition, then removing a portion thereof, forming a silicon nitride film on the surface of a substrate from which the silicon dioxide has been removed, and, simultaneously, introducing nitrogen to the surface of the silicon dioxide left not being removed, successively, dissolving and removing nitrogen
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 27, 2007
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Shimpei Tsujikawa, Toshiyuki Mine, Jiro Yugami, Natsuki Yokoyama, Tsuyoshi Yamauchi
  • Patent number: 7193281
    Abstract: There is provided a semiconductor device configured as follows. On a semiconductor substrate, a titanium oxide film which is an insulating film having a higher dielectric constant than that of a silicon dioxide film is formed as a gate insulating film, and a gate electrode is disposed thereon, resulting in a field effect transistor. The end portions in the gate length direction of the titanium oxide film are positioned inwardly from the respective end portions on the source side and on the drain side of the gate electrode, and the end portions of the titanium oxide film are positioned in a region in which the gate electrode overlaps with the source region and the drain region in plan configuration. This semiconductor device operates at a high speed, and is excellent in short channel characteristics and driving current. Further, in the semiconductor device, the amount of metallic elements introduced into a silicon substrate is small.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: March 20, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Jiro Yugami, Natsuki Yokoyama, Toshiyuki Mine, Yasushi Goto
  • Publication number: 20070007602
    Abstract: The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered. The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
    Type: Application
    Filed: July 3, 2006
    Publication date: January 11, 2007
    Applicant: Renesas Technology Corp.
    Inventors: Hidekazu Oda, Takahisa Eimori, Jiro Yugami, Takahiro Maruyama, Tomohiro Yamashita, Yukio Nishida, Shinichi Yamanari, Takashi Hayashi, Kenichi Mori
  • Publication number: 20060273401
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Application
    Filed: April 24, 2006
    Publication date: December 7, 2006
    Applicant: Renesas Technology Corp.
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Publication number: 20060267116
    Abstract: An object of the present invention is to improve the performance of a semiconductor device having a CMISFET. Each of an n channel MISFET and a p channel MISFET which form the CMISFET includes a gate insulating film composed of a silicon oxynitride film and a gate electrode including a silicon film positioned on the gate insulating film. Metal elements such as Hf are introduced near the interface between the gate electrode and the gate insulating film with a surface density of 1×1013 to 5×1014 atoms/cm2. The impurity concentration of channel regions of the n channel MISFET and the p channel MISFET is controlled to be equal to or lower than 1.2×1018/cm3.
    Type: Application
    Filed: May 24, 2006
    Publication date: November 30, 2006
    Inventors: Yasuhiro Shimamoto, Jiro Yugami, Masao Inoue, Masaharu Mizutani
  • Publication number: 20060214245
    Abstract: The semiconductor device includes a semiconductor substrate, a gate insulating film formed in contact with an upper side of the semiconductor substrate, and a gate electrode formed on the upper side of the gate insulating film and made of metal nitride or metal nitride silicide. A buffer layer for preventing diffusion of nitrogen and silicon is interposed between the gate insulating film and the gate electrode. Preferably, the buffer layer has a thickness of 5 nm or less. In the case where gate electrode contains Ti elements, and the gate insulating film contains Hf elements, the buffer layer preferably contains a titanium film.
    Type: Application
    Filed: March 9, 2006
    Publication date: September 28, 2006
    Applicant: Renesas Technology Corp.
    Inventors: Jiro Yugami, Masao Inoue, Kenichi Mori, Shinsuke Sakashita
  • Publication number: 20060208325
    Abstract: A MISFET includes: a p type substrate having a channel region with an impurity concentration C; an insulating film made of SiO2 and formed on the channel region; and an insulating film made of HfSiON and formed on the gate insulating film. When there is a postulated MISFET including a postulated substrate having a channel region with the impurity concentration C and made of a material identical to the substrate and an insulating film made solely of SiON formed on the channel region, said impurity concentration C of channel region is set so that a maximum value of mobility of electrons in said channel region is higher than a maximum value of mobility of electrons in the postulated channel region. Thus, the power supply voltage can be reduced and the power consumption can be reduced.
    Type: Application
    Filed: March 13, 2006
    Publication date: September 21, 2006
    Applicant: Renesas Technology Corp.
    Inventors: Masaharu Mizutani, Masao Inoue, Jiro Yugami, Junichi Tsuchimoto, Koji Nomura, Yasuhiro Shimamoto
  • Patent number: 7064400
    Abstract: There is provided a semiconductor device configured as follows. On a semiconductor substrate, a titanium oxide film which is an insulating film having a higher dielectric constant than that of a silicon dioxide film is formed as a gate insulating film, and a gate electrode is disposed thereon, resulting in a field effect transistor. The end portions in the gate length direction of the titanium oxide film are positioned inwardly from the respective end portions on the source side and on the drain side of the gate electrode, and the end portions of the titanium oxide film are positioned in a region in which the gate electrode overlaps with the source region and the drain region in plan configuration. This semiconductor device operates at a high speed, and is excellent in short channel characteristics and driving current. Further, in the semiconductor device, the amount of metallic elements introduced into a silicon substrate is small.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: June 20, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Jiro Yugami, Natsuki Yokoyama, Toshiyuki Mine, Yasushi Goto
  • Publication number: 20060081949
    Abstract: There is provided a semiconductor device configured as follows. On a semiconductor substrate, a titanium oxide film which is an insulating film having a higher dielectric constant than that of a silicon dioxide film is formed as a gate insulating film, and a gate electrode is disposed thereon, resulting in a field effect transistor. The end portions in the gate length direction of the titanium oxide film are positioned inwardly from the respective end portions on the source side and on the drain side of the gate electrode, and the end portions of the titanium oxide film are positioned in a region in which the gate electrode overlaps with the source region and the drain region in plan configuration. This semiconductor device operates at a high speed, and is excellent in short channel characteristics and driving current. Further, in the semiconductor device, the amount of metallic elements introduced into a silicon substrate is small.
    Type: Application
    Filed: December 8, 2005
    Publication date: April 20, 2006
    Inventors: Jiro Yugami, Natsuki Yokoyama, Toshiyuki Mine, Yasushi Goto