Patents by Inventor Jiunn-Yi Chu

Jiunn-Yi Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110316039
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 29, 2011
    Inventors: WEN-HUANG LIU, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Patent number: 8003994
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 23, 2011
    Assignee: SemiLEDs Optoelectronics Co., Ltd
    Inventors: Wen-Huang Liu, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Patent number: 7892891
    Abstract: Techniques for dicing wafer assemblies containing multiple metal device dies, such as vertical light-emitting diode (VLED), power device, laser diode, and vertical cavity surface emitting laser device dies, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, such techniques are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: February 22, 2011
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Trung Tri Doan, Chuong Anh Tran, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Feng-Hsu Fan, Jui-Kang Yen
  • Patent number: 7829440
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, a seed metal layer may be used to grow hard metal layers above it for handling. Metal may be plated above these metal layers everywhere except where a block of stop electroplating (EP) material exists. The stop EP material may be obliterated, and a barrier layer may be formed above the entire remaining structure. The substrate may be removed, and the individual dies may have any desired bonding pads and/or patterned circuitry added to the semiconductor surface. The remerged hard metal after laser cutting and heating should be strong enough for handling. Tape may be added to the wafer, and a breaker may be used to break the dies apart. The resulting structure may be flipped over, and the tape may be expanded to separate the individual dies.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 9, 2010
    Assignee: SemiLEDS Optoelectronics Co. Ltd.
    Inventors: Jiunn-Yi Chu, Chao-Chen Cheng, Chen-Fu Chu, Trung Tri Doan
  • Publication number: 20100258834
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 14, 2010
    Inventors: WEN-HUANG LIU, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Patent number: 7759670
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: July 20, 2010
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Wen-Huang Liu, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Patent number: 7723718
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: May 25, 2010
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Chuong Anh Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Feng-Hsu Fan, Jui-Kang Yen
  • Patent number: 7687322
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 30, 2010
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Chuong Anh Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Feng-Hsu Fan, Jui-Kang Yen
  • Publication number: 20080308829
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 18, 2008
    Inventors: WEN-HUANG LIU, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Publication number: 20080194051
    Abstract: Techniques for dicing wafer assemblies containing multiple metal device dies, such as vertical light-emitting diode (VLED), power device, laser diode, and vertical cavity surface emitting laser device dies, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, such techniques are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Application
    Filed: October 11, 2006
    Publication date: August 14, 2008
    Inventors: CHEN-FU CHU, TRUNG TRI DOAN, CHUONG ANH TRAN, CHAO-CHEN CHENG, JIUNN-YI CHU, WEN-HUANG LIU, HAO-CHUN CHENG, FENG-HSU FAN, JUI-KANG YEN
  • Publication number: 20080087875
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 17, 2008
    Inventors: Feng-Hsu Fan, Trung Tri Doan, Chuong Anh Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Jui-Kang Yen
  • Publication number: 20080035950
    Abstract: Techniques for fabricating contacts on inverted configuration surfaces of GaN layers of semiconductor devices are provided. An n-doped GaN layer may be formed with a surface exposed by removing a substrate on which the n-doped GaN layer was formed. The crystal structure of such a surface may have a significantly different configuration than the surface of an as-deposited p-doped GaN layer.
    Type: Application
    Filed: June 12, 2007
    Publication date: February 14, 2008
    Inventors: CHEN-FU CHU, Wen-Huang Liu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Trung Doan
  • Publication number: 20080032488
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, a seed metal layer may be used to grow hard metal layers above it for handling. Metal may be plated above these metal layers everywhere except where a block of stop electroplating (EP) material exists. The stop EP material may be obliterated, and a barrier layer may be formed above the entire remaining structure. The substrate may be removed, and the individual dies may have any desired bonding pads and/or patterned circuitry added to the semiconductor surface. The remerged hard metal after laser cutting and heating should be strong enough for handling. Tape may be added to the wafer, and a breaker may be used to break the dies apart. The resulting structure may be flipped over, and the tape may be expanded to separate the individual dies.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 7, 2008
    Inventors: JIUNN-YI CHU, Chao-Chen Cheng, Chen-Fu Chu, Trung Tri Doan