Patents by Inventor Joachim Gerster

Joachim Gerster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8012270
    Abstract: A soft magnetic alloy consists essentially of 5 percent by weight?Co?30 percent by weight, 1 percent by weight?Cr?20 percent by weight, 0.1 percent by weight?Al?2 percent by weight, 0 percent by weight?Si?1.5 percent by weight, 0.017 percent by weight?Mn?0.2 percent by weight, 0.01 percent by weight?S?0.05 percent by weight where Mn/S is >1.7, 0 percent by weight?O?0.0015 percent by weight, und 0.0003 percent by weight?Ce?0.05 percent by weight, 0 percent by weight?Ca?0.005 percent by weight and the remainder iron, where 0.117 percent by weight?(Al+Si+Mn+V+Mo+W+Nb+Ti+Ni)?5 percent by weight.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: September 6, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20110168799
    Abstract: A magnetic component for a magnetically actuated fuel injection device is formed of a corrosion resistant soft magnetic alloy consisting essentially of, in weight percent, 3%<Co<20%, 6%<Cr<15%, 0%?S?0.5%, 0%?Mo?3%, 0%?Si?3.5%, 0%?Al?4.5%, 0%?Mn?4.5%, 0%?Me?6%, where Me is one or more of the elements Sn, Zn, W, Ta, Nb, Zr and Ti, 0%?V?4.5%, 0%?Ni?5%, 0%?C<0.05%, 0%?Cu<1%, 0%?P<0.1%, 0%?N<0.5%, 0%?O<0.05%, 0%?B<0.01%, and the balance being essentially iron and the usual impurities.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 14, 2011
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventor: Joachim GERSTER
  • Patent number: 7909945
    Abstract: Disclosed are soft magnetic alloys that consist essentially of 10% by weight ?Co?22% by weight, 0% by weight ?V?4% by weight, 1.5% by weight ?Cr?5% by weight, 1% by weight ?Mn?2% by weight, 0% by weight ?Mo?1% by weight, 0.5% by weight ?Si?1.5% by weight, 0.1% by weight ?Al?1.0% by weight, rest iron. Also disclosed are methods of making the alloys, and products containing them, such as actuator systems, electric motors, and the like.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: March 22, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20110050376
    Abstract: A laminate stack having individual soft magnetic sheets. The individual sheets are involutely curved in the laminate stack. Each individual sheet has a first long side, a second long side opposite the first long side, a first short side and a second short side opposite the first short side. The first long side has a recess, said recess being rectangular and equidistant from the first short side, the second short side and the second long side when the individual sheet is in its uncurved state.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 3, 2011
    Applicant: Vacuumschmelze GmbH & Co., KG
    Inventors: Joachim Gerster, Herbert Hoehn
  • Publication number: 20110001594
    Abstract: A magnetic article comprises, in total, elements in amounts capable of providing at least one (La1-aMa) (Fe1-b-cTbYc)13-dXe phase and less than 0.5 Vol % impurities, wherein 0?a?0.9, 0?b?0.2, 0.05?c?0.2, ?1?d?+1, 0?e?3, M is one or more of the elements Ce, Pr and Nd, T is one or more of the elements Co, Ni, Mn and Cr, Y is one or more of the elements Si, Al, As, Ga, Ge, Sn and Sb and X is one or more of the elements H, B, C, N, Li and Be. The magnetic article comprises a permanent magnet.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 6, 2011
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Matthias Katter, Joachim Gerster, Ottmar Roth
  • Publication number: 20100231204
    Abstract: A sensor comprises a magnetic field source, at least one flux conducting soft magnetic element with at least one air gap and at least one magnetic field sensor located in the air gap and measuring a change of the magnetic field of the magnetic field source. The flux conducting soft magnetic element consists of 35% by weight?Ni?50% by weight, 0% by weight?Co?2% by weight, 0% by weight?Mn?1.0% by weight, 0% by weight?Si?0.5% by weight and 0.5% by weight?Cr?8% by weight and/or 0.5% by weight?Mo?8% by weight, wherein (Mo+Cr)?8, rest iron and unavoidable impurities.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 16, 2010
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Johannes Tenbrink, Witold Pieper, Burkard Kraus, Joachim Gerster
  • Patent number: 7582171
    Abstract: A high-strength, soft-magnetic iron-cobalt-vanadium alloy selection is proposed, consisting of 35.0?Co?55.0% by weight, 0.75?V?2.5% by weight, O?Ta+2×Nb?0.8% by weight, 0.3<Zr?1.5% by weight, remainder Fe and melting-related and/or incidental impurities. This zirconium-containing alloy selection has excellent mechanical properties, in particular a very high yield strength, high inductances and particularly low coercive forces. It is eminently suitable for use as a material for magnetic bearings used in the aircraft industry.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 1, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Joachim Gerster, Johannes Tenbrink
  • Publication number: 20090184790
    Abstract: A soft magnetic alloy consists essentially of 5 percent by weight?Co?30 percent by weight, 1 percent by weight?Cr?20 percent by weight, 0.1 percent by weight?Al?2 percent by weight, 0 percent by weight?Si?1.5 percent by weight, 0.017 percent by weight?Mn?0.2 percent by weight, 0.01 percent by weight?S?0.05 percent by weight where Mn/S is >1.7, 0 percent by weight?O?0.0015 percent by weight, und 0.0003 percent by weight?Ce?0.05 percent by weight, 0 percent by weight?Ca?0.005 percent by weight and the remainder iron, where 0.117 percent by weight?(Al+Si+Mn+V+Mo+W+Nb+Ti+Ni)?5 percent by weight.
    Type: Application
    Filed: July 24, 2008
    Publication date: July 23, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20090145522
    Abstract: Disclosed are soft magnetic alloys that consist essentially of 10% by weight?Co?22% by weight, 0% by weight?V?4% by weight, 1.5% by weight?Cr?5% by weight, 1% by weight?Mn?2% by weight, 0% by weight?Mo?1% by weight, 0.5% by weight?Si?1.5% by weight, 0.1% by weight?Al?1.0% by weight, rest iron. Also disclosed are methods of making the alloys, and products containing them, such as actuator systems, electric motors, and the like.
    Type: Application
    Filed: July 27, 2007
    Publication date: June 11, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20090039994
    Abstract: A soft magnetic alloy consists essentially of 10 percent by weight ?Co?22 percent by weight, 0 percent by weight ?V?4 percent by weight, 1.5 percent by weight ?Cr?5 percent by weight, 0 percent by weight <Mn<1 percent by weight, 0 percent by weight ?Mo?1 percent by weight, 0.5 percent by weight ?Si?1.5 percent by weight, 0.1 percent by weight ?Al?1.0 percent by weight and the remainder iron, the content of the elements chromium and manganese and molybdenum and aluminium and silicon and vanadium being 4.0 percent by weight ?(Cr+Mn+Mo+Al+Si+V)?9.0 percent by weight.
    Type: Application
    Filed: July 24, 2008
    Publication date: February 12, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20080136570
    Abstract: A magnetic component for a magnetically actuated fuel injection device is formed of a corrosion resistant soft magnetic alloy consisting essentially of, in weight percent, 9%<Co<20%, 6%<Cr<15%, 0%?S?0.5%, 0%?Mn?4.5%, 0%?Al?2.5%, 0%?V?2.0%, 0%?Ti?2.0%, 0%?Mo?2.0%, 0%?Si?3.5%, 0%?C<0.05%, 0%?P<0.1%, 0%?N<0.5%, 0%?O<0.05%, 0%?B<0.01%, and the balance being essentially iron and having at least one of Al, V, Ti and Mo.
    Type: Application
    Filed: July 27, 2007
    Publication date: June 12, 2008
    Inventor: Joachim Gerster
  • Publication number: 20080099106
    Abstract: Disclosed are soft magnetic alloys that consist essentially of 10% by weight?Co?22% by weight, 0% by weight?V?4% by weight, 1.5% by weight?Cr?5% by weight, 1% by weight?Mn?2% by weight, 0% by weight?Mo?1% by weight, 0.5% by weight?Si?1.5% by weight, 0.1% by weight?Al?1.0% by weight, rest iron. Also disclosed are methods of making the alloys, and products containing them, such as actuator systems, electric motors, and the like.
    Type: Application
    Filed: July 27, 2007
    Publication date: May 1, 2008
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20080042505
    Abstract: The invention relates to a method for the production of a soft magnetic core for generators and generator with a core of this type. To produce a core, a plurality of magnetically activated and/or magnetically activatable textured laminations is produced from a CoFeV alloy. This plurality of laminations is then stacked to form a core assembly. Then the core assembly, if consisting of magnetically activatable laminations, is magnetically activated. Finally, the magnetically activated core assembly is eroded to produce a soft magnetic core. A core of this type is suitable for a generator with a stator and a rotor for high-speed aviation turbines, the laminations in the core assembly being oriented in different texture directions relative to one another.
    Type: Application
    Filed: July 18, 2006
    Publication date: February 21, 2008
    Applicant: Vacuumschmelze GMBH & Co. KG
    Inventors: Joachim Gerster, Witold Pieper, Rudi Ansmann, Michael Koehler, Michael Von Pyschow
  • Publication number: 20070176025
    Abstract: A magnetic component for a magnetically actuated fuel injection device is formed of a corrosion resistant soft magnetic alloy consisting essentially of, in weight percent, 3%<Co<20%, 6%<Cr<15%, 0%?S?0.5%, 0%?Mo?3%, 0%?Si?3.5%, 0%?Al?4.5%, 0%?Mn?4.5%, 0%?Me?6%, where Me is one or more of the elements Sn, Zn, W, Ta, Nb, Zr and Ti, 0%?V?4.5%, 0%?Ni?5%, 0%?C<0.05%, 0%?Cu<1%, 0%?P<0.1%, 0%?N<0.5%, 0%?0<0.05%, 0%?B<0.01%, and the balance being essentially iron and the usual impurities.
    Type: Application
    Filed: January 31, 2006
    Publication date: August 2, 2007
    Inventor: Joachim Gerster
  • Publication number: 20050268994
    Abstract: A high-strength, soft-magnetic iron-cobalt-vanadium alloy selection is proposed, consisting of 35.0?Co?55.0% by weight, 0.75?V?2.5% by weight, O?Ta+2×Nb?0.8% by weight, 0.3<Zr?1.5% by weight, remainder Fe and melting-related and/or incidental impurities. This zirconium-containing alloy selection has excellent mechanical properties, in particular a very high yield strength, high inductances and particularly low coercive forces. It is eminently suitable for use as a material for magnetic bearings used in the aircraft industry.
    Type: Application
    Filed: May 7, 2004
    Publication date: December 8, 2005
    Inventors: Joachim Gerster, Johannes Tenbrink
  • Patent number: 6909342
    Abstract: A recursive surface-active wave filter with directed reflection is provided that such that the desired transmission behavior is modeled by superimposing the signals of three electrically interconnected individual tracks.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: June 21, 2005
    Assignee: EPCOS AG
    Inventors: Andreas Bergmann, Joachim Gerster
  • Publication number: 20040041666
    Abstract: It is proposed for a recursive surface-active wave filter with directed reflection that the desired transmission behavior be modeled by superimposing the signals of three electrically interconnected individual tracks.
    Type: Application
    Filed: June 16, 2003
    Publication date: March 4, 2004
    Inventors: Andreas Bergmann, Joachim Gerster