Patents by Inventor Joachim Hertkorn

Joachim Hertkorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10720549
    Abstract: In an embodiment a semiconductor layer sequence includes a pre-barrier layer including AlGaN, a pre-quantum well including InGaN having a first band gap, a multi-quantum well structure including a plurality of alternating main quantum wells of InGaN having a second band gap and main barrier layers of AlGaN or AlInGaN, wherein the second band gap is smaller than the first band gap and the main quantum wells are configured to generate a radiation having a wavelength of maximum intensity between 365 nm and 490 nm inclusive, a post-quantum well with a third band gap which is larger than the second band gap, a post-barrier layer including AlGaN or AlInGaN and an electron-blocking layer including AlGaN.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: July 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Patent number: 10566501
    Abstract: A method for producing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment the method includes providing a semiconductor layer sequence including a light-emitting and/or light-absorbing active zone and a top face downstream of the active zone in a stack direction extending perpendicular to a main plane of extension of the semiconductor layer sequence, applying a layer stack onto the top face, wherein the layer stack includes an oxide layer containing indium, and an intermediate face downstream of the top face in the stack direction and applying a contact layer onto the intermediate face, wherein the contact layer includes indium tin oxide, and wherein the layer stack is, within the bounds of manufacturing tolerances, free of tin.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Simeon Katz, Kai Gehrke, Massimo Drago, Joachim Hertkorn
  • Patent number: 10535515
    Abstract: A method of producing an optoelectronic semiconductor chip includes in order: A) creating a nucleation layer on a growth substrate, B) applying a mask layer on to the nucleation layer, C) growing a coalescence layer, wherein the coalescence layer is grown starting from regions of the nucleation layer not covered by mask islands having a first main growth direction perpendicular to the nucleation layer so that ribs are formed, D) further growing the coalescence layer with a second main growth direction parallel to the nucleation layer to form a contiguous and continuous layer, E) growing a multiple quantum well structure on the coalescence layer, F) applying a mirror having metallic contact regions that impress current into the multiple quantum well structure and mirror islands for the total reflection of radiation generated in the multiple quantum well structure, and G) detaching the growth substrate and creating a roughening by etching.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 14, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Joachim Hertkorn
  • Publication number: 20200006594
    Abstract: A semiconductor body is disclosed. In an embodiment a semiconductor body includes a p-doped region, an active region, an intermediate layer and a layer stack containing indium, wherein an indium concentration in the layer stack changes along a stacking direction, wherein the layer stack is formed with exactly one nitride compound semiconductor material apart from dopants, wherein the intermediate layer is nominally free of indium, arranged between the layer stack and the active region, and directly adjoins the layer stack, wherein the intermediate layer and/or the layer stack are n-doped at least in places, wherein a dopant concentration of the layer stack is at least 5*1017 1/cm3 and at most 2*1018 1/cm3, and wherein a dopant concentration of the intermediate layer is at least 2*1018 1/cm3 and at most 3*1019 1/cm3.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 2, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Joachim Hertkorn, Marcus Eichfelder
  • Patent number: 10475961
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence composed of AlInGaN comprising an n-conducting n-region, a p-conducting p-region and an intermediate active zone having at least one quantum well for generating a radiation, wherein the p-region comprises an electron barrier layer, a contact layer and an intermediate decomposition stop layer, the contact layer being directly adjacent to a contact metallization, wherein the decomposition stop layer comprises an aluminum content of at least 5% and at most 30% in places, wherein an intermediate region arranged between the electron barrier layer and the decomposition stop layer has a thickness between 2 nm and 15 nm inclusive, the intermediate region being free of aluminum, and wherein the aluminum content in the decomposition stop layer varies and increases on average in a direction towards the contact layer.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Patent number: 10411155
    Abstract: A method of producing optoelectronic semiconductor chips includes growing a semiconductor layer sequence on a growth substrate; applying at least one metallization to a contact side of the semiconductor layer sequence, which contact side faces away from the growth substrate; attaching an intermediate carrier to the semiconductor layer sequence, wherein a sacrificial layer is attached between the intermediate carrier and the semiconductor layer sequence; removing the growth substrate from the semiconductor layer sequence; structuring the semiconductor layer sequence into individual chip regions; at least partially dissolving the sacrificial layer; and subsequently removing the intermediate carrier, wherein, in removing the intermediate carrier, part of the sacrificial layer is still present, removing the intermediate carrier includes mechanically breaking remaining regions of the sacrificial layer, and the sacrificial layer is completely removed after removing the intermediate carrier.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: September 10, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Lorenzo Zini, Alexander Frey, Joachim Hertkorn, Berthold Hahn
  • Publication number: 20190267511
    Abstract: A semiconductor layer sequence is disclosed. In an embodiment the semiconductor layer sequence includes a pre-barrier layer comprising AlGaN, a pre-quantum well comprising InGaN having a first band gap, a multi-quantum well structure comprising a plurality of alternating main quantum wells of InGaN having a second band gap and main barrier layers of AlGaN or AlInGaN, wherein the second band gap is smaller than the first band gap and the main quantum wells are configured to generate a radiation having a wavelength of maximum intensity between 365 nm and 490 nm inclusive, a post-quantum well with a third band gap which is larger than the second band gap, a post-barrier layer comprising AlGaN or AlInGaN and an electron-blocking layer including AlGaN.
    Type: Application
    Filed: September 4, 2017
    Publication date: August 29, 2019
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Patent number: 10388828
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 20, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Publication number: 20190245110
    Abstract: A semiconductor chip and a method for producing a semiconductor chip are disclosed. In an embodiment an electronic semiconductor chip includes a growth substrate with a growth surface, which is formed by a planar region having a plurality of three-dimensional surface structures on the planar region, a nucleation layer composed of oxygen-containing AlN directly disposed on the growth surface and a nitride-based semiconductor layer sequence disposed on the nucleation layer, wherein the semiconductor layer sequence is selectively grown from the planar region such that a growth of the semiconductor layer sequence on surfaces of the three-dimensional surface structures is reduced or non-existent compared to a growth on the planar region, and wherein a selectivity of the growth of the semiconductor layer sequence on the planar region is targetedly adjusted by an oxygen content of the nucleation layer.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Werner Bergbauer, Thomas Lehnhardt, Jürgen Off, Joachim Hertkorn
  • Publication number: 20190237617
    Abstract: An optoelectronic component includes an active layer having a multiple quantum well structure, wherein the multiple quantum well structure includes quantum well layers, including Alx1Iny1Ga1-x1-y1N with 0?x1<0.03, 0?y1?0.1 and x1+y1?1, and barrier layers including Alx2Iny2Ga1-x2-y2N with 0?x2?1, 0?y2?0.02 and x2+y2?1, wherein the barrier layers have a spatially varying aluminium content x2, a maximum value of the aluminium content in the barrier layers is x2,max?0.05, and a minimum value of the aluminium content in the barrier layers is x2,min<0.05.
    Type: Application
    Filed: August 28, 2017
    Publication date: August 1, 2019
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Publication number: 20190229239
    Abstract: An optoelectronic semiconductor body includes an active region including a quantum well that generates electromagnetic radiation, a first region that impedes passage of charge carriers from the active region, and a second region that impedes passage of charge carriers from the active region, wherein the semiconductor body is based on a nitride compound semiconductor material, the first region is directly adjacent to the active region on a p-side, the second region is arranged on a side of the first region facing away from the active region, the first region has an electronic band gap larger than the electronic band gap of the quantum well and less than or equal to an electronic band gap of the second region, and the first region and the second region contain aluminum.
    Type: Application
    Filed: June 26, 2017
    Publication date: July 25, 2019
    Inventors: Werner Bergbauer, Joachim Hertkorn, Alexander Walter
  • Patent number: 10354865
    Abstract: A method for procuring a nitride compound semiconductor device is disclosed. In an embodiment the method includes growing a first nitride compound semiconductor layer onto a growth substrate, depositing a masking layer, growing a second nitride compound semiconductor layer onto the masking layer, growing a third nitride compound semiconductor layer onto the second nitride compound semiconductor layer such that the third nitride compound semiconductor layer has non-planar structures and growing a fourth nitride compound semiconductor layer onto the non-planar structures such that the fourth nitride compound semiconductor layer has an essentially planar surface. The method further includes growing a functional layer sequence of the nitride compound semiconductor device, connecting a side of the functional layer sequence located opposite to the growth substrate to a carrier and removing the growth substrate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: July 16, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Joachim Hertkorn, Lorenzo Zini, Alexander Frey
  • Patent number: 10312401
    Abstract: A method for producing an electronic semiconductor chip and a semiconductor chip are disclosed. In embodiments, the method includes providing a growth substrate having a growth surface formed by a flat region having a plurality of three-dimensional surface structures on the flat region, directly applying a nucleation layer of oxygen-containing AlN over a large area to the growth surface and growing a nitride-based semiconductor layer sequence on the nucleation layer, wherein growing the semiconductor layer sequence includes selectively growing the semiconductor layer sequence upwards from the flat region.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: June 4, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Thomas Lehnhardt, Jürgen Off, Joachim Hertkorn
  • Publication number: 20190081211
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence composed of AlInGaN comprising an n-conducting n-region, a p-conducting p-region and an intermediate active zone having at least one quantum well for generating a radiation, wherein the p-region comprises an electron barrier layer, a contact layer and an intermediate decomposition stop layer, the contact layer being directly adjacent to a contact metallization, wherein the decomposition stop layer comprises an aluminum content of at least 5% and at most 30% in places, wherein an intermediate region arranged between the electron barrier layer and the decomposition stop layer has a thickness between 2 nm and 15 nm inclusive, the intermediate region being free of aluminum, and wherein the aluminum content in the decomposition stop layer varies and increases on average in a direction towards the contact layer.
    Type: Application
    Filed: July 18, 2017
    Publication date: March 14, 2019
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Publication number: 20180190874
    Abstract: A method for producing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment the method includes providing a semiconductor layer sequence including a light-emitting and/or light-absorbing active zone and a top face downstream of the active zone in a stack direction extending perpendicular to a main plane of extension of the semiconductor layer sequence, applying a layer stack onto the top face, wherein the layer stack includes an oxide layer containing indium, and an intermediate face downstream of the top face in the stack direction and applying a contact layer onto the intermediate face, wherein the contact layer includes indium tin oxide, and wherein the layer stack is, within the bounds of manufacturing tolerances, free of tin.
    Type: Application
    Filed: June 16, 2016
    Publication date: July 5, 2018
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Simeon Katz, Kai Gehrke, Massimo Drago, Joachim Hertkorn
  • Patent number: 9997671
    Abstract: A composite substrate has a carrier and a utility layer. The utility layer is attached to the carrier by means of a dielectric bonding layer and the carrier contains a radiation conversion material. Other embodiments relate to a semiconductor chip having such a composite substrate, a method for producing a composite substrate and a method for producing a semiconductor chip with a composite substrate.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: June 12, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Johannes Baur, Berthold Hahn, Volker Haerle, Karl Engl, Joachim Hertkorn, Tetsuya Taki
  • Publication number: 20180144933
    Abstract: A method for procuring a nitride compound semiconductor device is disclosed. In an embodiment the method includes growing a first nitride compound semiconductor layer onto a growth substrate, depositing a masking layer, growing a second nitride compound semiconductor layer onto the masking layer, growing a third nitride compound semiconductor layer onto the second nitride compound semiconductor layer such that the third nitride compound semiconductor layer has non-planar structures and growing a fourth nitride compound semiconductor layer onto the non-planar structures such that the fourth nitride compound semiconductor layer has an essentially planar surface. The method further includes growing a functional layer sequence of the nitride compound semiconductor device, connecting a side of the functional layer sequence located opposite to the growth substrate to a carrier and removing the growth substrate.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 24, 2018
    Inventors: Joachim Hertkorn, Lorenzo Zini, Alexander Frey
  • Patent number: 9842964
    Abstract: A method for producing a semiconductor layer sequence is disclosed. In an embodiment the includes growing a first nitridic semiconductor layer at the growth side of a growth substrate, growing a second nitridic semiconductor layer having at least one opening on the first nitridic semiconductor layer, removing at least pail of the first nitridic semiconductor layer through the at least one opening in the second nitridic semiconductor layer, growing a third nitridic semiconductor layer on the second nitridic semiconductor layer, wherein the third nitridic semiconductor layer covers the at least one opening at least in places in such a way that at least one cavity free of a semiconductor material is present between the growth substrate and a subsequent semiconductor layers and removing the growth substrate.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 12, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Joachim Hertkorn, Werner Bergbauer
  • Publication number: 20170352535
    Abstract: A method of producing an optoelectronic semiconductor chip includes in order: A) creating a nucleation layer on a growth substrate, B) applying a mask layer on to the nucleation layer, C) growing a coalescence layer, wherein the coalescence layer is grown starting from regions of the nucleation layer not covered by mask islands having a first main growth direction perpendicular to the nucleation layer so that ribs are formed, D) further growing the coalescence layer with a second main growth direction parallel to the nucleation layer to form a contiguous and continuous layer, E) growing a multiple quantum well structure on the coalescence layer, F) applying a mirror having metallic contact regions that impress current into the multiple quantum well structure and mirror islands for the total reflection of radiation generated in the multiple quantum well structure, and G) detaching the growth substrate and creating a roughening by etching.
    Type: Application
    Filed: November 11, 2015
    Publication date: December 7, 2017
    Inventor: Joachim Hertkorn
  • Publication number: 20170324001
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn