Patents by Inventor Jochen Paul

Jochen Paul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240028012
    Abstract: A production system that includes a device for processing, handling or storing workpieces made of wood, wood materials or plastic, or for handling or storing mounting material, equipment or tools. The system can also include a detection module for detecting at least one measurement parameter and a multifunctional gateway unit. The multifunctional gateway unit can have a communication server that operates in accordance with a predetermined communication standard and is configured to compare the communication standards of the communication server and of a communication client.
    Type: Application
    Filed: August 26, 2021
    Publication date: January 25, 2024
    Inventors: Patrick MÜLLER, Philipp HENRY, Jochen PAUL
  • Publication number: 20230321864
    Abstract: An equipping device can accommodate a supply of coating material for a coating machine or a material storage system. The coating material can be kept available and/or evaluated by means of such an equipping device. Additionally, the present disclose also relates to workpieces in the field of furniture and components industry that can be coated with a coating material that can help the user identify the quantity of coating material being used or remaining.
    Type: Application
    Filed: September 6, 2021
    Publication date: October 12, 2023
    Inventors: Patrick MÜLLER, Stefan LEIPERSBERGER, Jwalant VAISHNAV, Daniel SEID, Jochen PAUL
  • Publication number: 20220413472
    Abstract: A multifunctional gateway unit may connect at least one apparatus, which is in particular used for machining, handling or storing workpieces that preferably consist of, at least in portions, of wood, wooden materials, or plastic. The multifunctional gateway unit may include, at least one data interface for connecting the gateway unit to a data server; at least one computing unit which comprises a CPU and is designed to interchange data with the data interface; at least one sensor interface which is designed to receive data from a sensor, which is associated with the apparatus, and to forward the data to the computing unit; and/or at least one output interface which is designed to receive data from the computing unit and to forward the data to at least one unit of the apparatus.
    Type: Application
    Filed: October 21, 2020
    Publication date: December 29, 2022
    Applicant: HOMAG GMBH
    Inventors: Simon RIETHMÜLLER, Martin MEINTEL, Jochen PAUL, Manuel FRIEBOLIN, Benjamin KERTH
  • Patent number: 10474036
    Abstract: An optical arrangement includes an optical element (1) and a thermal manipulation device. The optical element has a substrate (2), a coating (3, 9, 5) applied to the substrate (2), and an antireflection coating (3). The coating (3, 9, 5) includes: a reflective multi-layer coating (5b) configured to reflect radiation (4) with a used wavelength (?EUV). The antireflection coating (3) is arranged between the substrate (2) and the reflective multi-layer coating (5b) to suppress reflection of heating radiation (7) with a heating wavelength (?H) that differs from the used wavelength (?EUV). The thermal manipulation device has at least one heating light source (8) to produce heating radiation (7).
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: November 12, 2019
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Hans-Jochen Paul, Boris Bittner, Norbert Wabra, Thomas Schicketanz
  • Patent number: 9915876
    Abstract: An EUV mirror with a substrate and a multilayer arrangement including: a periodic first layer group having N1>1 first layer pairs of period thickness P1 and arranged on a radiation entrance side of the multilayer arrangement; a periodic second layer group having N2>1 second layer pairs of period thickness P2 and arranged between the first layer group and the substrate; and a third layer group having N3 third layer pairs arranged between the first and second layer groups. N1>N2. The third layer group has a third period thickness P3 which deviates from an average period thickness PM=(P1+P2)/2 by a period thickness difference ?P. ?P corresponds to the quotient of the optical layer thickness (?/4) of a quarter-wave layer and the product of N3 and cos(AOIM), AOIM being the mean incidence angle for which the multilayer arrangement is designed.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: March 13, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Thomas Schicketanz, Hans-Jochen Paul, Christoph Zaczek
  • Patent number: 9915873
    Abstract: A reflective optical element (50) having a substrate (52) and a multilayer system (51) that has a plurality of partial stacks (53), each with a first layer (54) of a first material and a second layer (55) of a second material. The first material and the second material differ from one another in refractive index at an operating wavelength of the optical element. Each of the partial stacks has a thickness (Di) and a layer thickness ratio (?i), wherein the layer thickness ratio is the quotient of the thickness of the respective first layer and the partial stack thickness (Di). In a first section of the multilayer system, for at least one of the two variables of partial stack thickness (Di) and layer thickness ratio (?i), the mean square deviation from the respective mean values therefor is at least 10% less than in a second section of the multilayer system.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 13, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Hans-Jochen Paul, Thomas Schicketanz, Oliver Dier, Joern Weber, Christian Grasse, Ralf Winter, Sebastian Strobel
  • Publication number: 20160377988
    Abstract: An optical arrangement includes an optical element (1) and a thermal manipulation device. The optical element has a substrate (2), a coating (3, 9, 5) applied to the substrate (2), and an antireflection coating (3). The coating (3, 9, 5) includes: a reflective multi-layer coating (5b) configured to reflect radiation (4) with a used wavelength (?EUV). The antireflection coating (3) is arranged between the substrate (2) and the reflective multi-layer coating (5b) to suppress reflection of heating radiation (7) with a heating wavelength (?H) that differs from the used wavelength (?EUV). The thermal manipulation device has at least one heating light source (8) to produce heating radiation (7).
    Type: Application
    Filed: September 6, 2016
    Publication date: December 29, 2016
    Inventors: Hans-Jochen PAUL, Boris BITTNER, Norbert WABRA, Thomas SCHICKETANZ
  • Patent number: 9494718
    Abstract: A mirror (1a; 1a?; 1b; 1b?; 1c; 1c?) for the EUV wavelength range and having a substrate (S) and a layer arrangement, wherein the layer arrangement includes at least one surface layer system (P??) consisting of a periodic sequence of at least two periods (P3) of individual layers, wherein the periods (P3) include two individual layers composed of different materials for a high refractive index layer (H??) and a low refractive index layer (L??), wherein the layer arrangement includes at least one surface protecting layer (SPL, Lp) or at least one surface protecting layer system (SPLS) having a thickness of greater than 20 nm, and preferably greater than 50 nm.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: November 15, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stephan Muellender, Joern Weber, Wilfried Clauss, Hans-Jochen Paul, Gerhard Braun, Sascha Migura, Aurelian Dodoc, Christoph Zaczek, Gisela Von Blanckenhagen, Roland Loercher
  • Publication number: 20160266499
    Abstract: A reflective optical element (50) having a substrate (52) and a multilayer system (51) that has a plurality of partial stacks (53), each with a first layer (54) of a first material and a second layer (55) of a second material. The first material and the second material differ from one another in refractive index at an operating wavelength of the optical element. Each of the partial stacks has a thickness (Di) and a layer thickness ratio (?i), wherein the layer thickness ratio is the quotient of the thickness of the respective first layer and the partial stack thickness (Di). In a first section of the multilayer system, for at least one of the two variables of partial stack thickness (Di) and layer thickness ratio (?i), the mean square deviation from the respective mean values therefor is at least 10% less than in a second section of the multilayer system.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: Hartmut ENKISCH, Hans-Jochen PAUL, Thomas SCHICKETANZ, Oliver DIER, Joern WEBER, Christian GRASSE, Ralf WINTER, Sebastian STROBEL
  • Publication number: 20160195648
    Abstract: An EUV mirror with a substrate and a multilayer arrangement including: a periodic first layer group having N1>1 first layer pairs of period thickness P1 and arranged on a radiation entrance side of the multilayer arrangement; a periodic second layer group having N2>1 second layer pairs of period thickness P2 and arranged between the first layer group and the substrate; and a third layer group having N3 third layer pairs arranged between the first and second layer groups. N1>N2. The third layer group has a mean third period thickness P3 which deviates from an average period thickness PM=(P1+P2)/2 by a period thickness difference ?P. ?P corresponds to the quotient of the optical layer thickness (?/4) of a quarter-wave layer and the product of N3 and cos(AOIM), AOIM being the mean incidence angle for which the multilayer arrangement is designed.
    Type: Application
    Filed: July 10, 2015
    Publication date: July 7, 2016
    Inventors: Thomas Schicketanz, Hans-Jochen Paul, Christoph Zaczek
  • Patent number: 9188771
    Abstract: An optical imaging system serving for imaging a pattern arranged in an object plane of the imaging system into an image plane of the imaging system with the aid of electromagnetic radiation from a wavelength range around a main wavelength ?0 has a multiplicity of mirrors. Each mirror has a mirror surface having a reflective layer arrangement having a sequence of individual layers.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 17, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Christoph Zaczek, Sascha Migura, Gerhard Braun, Hans-Juergen Mann, Hans-Jochen Paul
  • Publication number: 20130038929
    Abstract: A mirror (1a; 1a?; 1b; 1b?; 1c; 1c?) for the EUV wavelength range and having a substrate (S) and a layer arrangement, wherein the layer arrangement includes at least one surface layer system (P??) consisting of a periodic sequence of at least two periods (P3) of individual layers, wherein the periods (P3) include two individual layers composed of different materials for a high refractive index layer (H??) and a low refractive index layer (L??), wherein the layer arrangement includes at least one surface protecting layer (SPL, Lp) or at least one surface protecting layer system (SPLS) having a thickness of greater than 20 nm, and preferably greater than 50 nm.
    Type: Application
    Filed: June 15, 2012
    Publication date: February 14, 2013
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Stephan MUELLENDER, Joern WEBER, Wilfried CLAUSS, Hans-Jochen PAUL, Gerhard BRAUN, Sascha MIGURA, Aurelian DODOC, Christoph ZACZEK, Gisela VON BLANCKENHAGEN, Roland LOERCHER
  • Patent number: 8294991
    Abstract: An optical system of a microlithographic projection exposure apparatus permits comparatively flexible and fast influencing of the intensity distribution and/or the polarization state. The optical system includes at least one layer system that is at least one-side bounded by a lens or a mirror. The layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion with a maximum thickness of one micrometer (?m), and a manipulator for manipulation of the thickness profile of the layer portion.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 23, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ralf Mueller, Toralf Gruner, Michael Totzeck, Heiko Feldmann, Hans-Jochen Paul
  • Publication number: 20120224160
    Abstract: An optical imaging system serving for imaging a pattern arranged in an object plane of the imaging system into an image plane of the imaging system with the aid of electromagnetic radiation from a wavelength range around a main wavelength ?0 has a multiplicity of mirrors. Each mirror has a mirror surface having a reflective layer arrangement having a sequence of individual layers.
    Type: Application
    Filed: December 7, 2011
    Publication date: September 6, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Aurelian Dodoc, Christoph Zaczek, Sascha Migura, Gerhard Braun, Hans-Juergen Mann, Hans-Jochen Paul
  • Publication number: 20120212810
    Abstract: EUV-mirror having a substrate (S) and a layer arrangement that includes plural layer subsystems (P?, P??) each consisting of a periodic sequence of at least two periods (P2, P3) of individual layers. The periods (P2, P3) include two individual layers composed of different materials for a high refractive index layer (H?, H??) and a low refractive index layer (L?, L??) and have within each layer subsystem (P?, P??) a constant thickness (d2, d3) that deviates from that of the periods of an adjacent layer subsystem.
    Type: Application
    Filed: January 10, 2012
    Publication date: August 23, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hans-Jochen Paul, Gerhard Braun, Sascha Migura, Aurelian Dodoc, Christoph Zaczek
  • Publication number: 20120134015
    Abstract: EUV mirror with a layer arrangement on a substrate. The layer arrangement includes a plurality of layer subsystems each consisting of a periodic sequence of at least one period of individual layers. The periods include two individual layers composed of different material for a high refractive index layer and a low refractive index layer and have within each subsystem a constant thickness that deviates from a period thickness of an adjacent layer subsystem. The subsystem most distant from the substrate has (i) a number of periods greater than the number of periods for the layer subsystem that is second most distant from the substrate and/or (ii) a thickness of the high refractive index layer that deviates by more than 0.1 nm from that of the high refractive index layer of the subsystem that is second most distant from the substrate.
    Type: Application
    Filed: October 14, 2011
    Publication date: May 31, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hans-Jochen PAUL, Gerhard BRAUN, Sascha MIGURA, Aurelian DODOC, Christoph ZACZEK
  • Publication number: 20100134891
    Abstract: The disclosure concerns an optical system of a microlithographic projection exposure apparatus. To permit comparatively flexible and fast influencing of intensity distribution and/or the polarization state, an optical system includes at least one layer system that is at least one-side bounded by a lens or a mirror. The layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion with a maximum thickness of one micrometer (?m), and a manipulator for manipulation of the thickness profile of the layer portion.
    Type: Application
    Filed: January 14, 2010
    Publication date: June 3, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Ralf Mueller, Toralf Gruner, Michael Totzeck, Heiko Feldmann, Hans-Jochen Paul
  • Patent number: 7196842
    Abstract: An attenuating filter provides a prescribed attenuation of the intensity of transmitted, short-wavelength, ultraviolet light, in particular, at wavelengths below 200 nm, that is governed by a predefinable spatial distribution of its spectral transmittance. The filter has a transparent substrate (3), e.g. fabricated from crystalline calcium fluoride. A filter coating (5) fabricated from a dielectric material that absorbs over a predefined wavelength range is applied to at least one surface (4) of the substrate. In the case of operating wavelengths of about 193 nm, the filter coating consists largely of tantalum pentoxide. Filters of the type, which may be inexpensively fabricated with high yields, are noted for their high abilities to withstand laser radiation and may be effectively antireflection coated employing simply designed antireflection coatings.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: March 27, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Bernhard Weigl, Hans-Jochen Paul, Eric Eva
  • Patent number: 7093937
    Abstract: An optical component and a coating system for coating substrates for optical components with essentially rotationally symmetric coatings, the system having a planetary-drive system (1) that has a rotating planet carrier (2) and several planets (4), each of which carries a single substrate, that corotate both with the planet carrier and with respect to the primary carrier. In one embodiment a set of stationary first masks (20) that allow controlling the radial variation in physical film thickness is arranged between a source (8) of material situated beneath the planets and the substrates. A set of second masks that mask off evaporation angles exceeding a limiting evaporation or incidence angle (? max) for every substrate also corotate with the primary carrier (2), which allows depositing coatings having a prescribed radial film-thickness distribution and a virtually constant density of the coating material over their full radial extents for relatively low, and only slightly varying, evaporation angles.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: August 22, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Harry Bauer, Matthias Heller, Hans-Jochen Paul, Jens Ullmann, Patrick Scheible, Christoph Zaczek
  • Publication number: 20060050371
    Abstract: Antireflection multilayer coatings with only three or four layers are proposed for the production of laser resistant optical components with minimal residual reflection and high transparency for UV light in a wavelength range approx. 150 nm to approx. 250 nm at large angles of incidence in the range of approx. 70° to approx. 80°, particularly in the range between approx. 72° and approx. 76°. For incident p-polarized UV light three-layer systems can be used, in which a layer of low refractive material, in particular magnesium fluoride is arranged between two layers of high refractive material and, in the case of the specified wavelength, of minimally absorbent material, in particular of hafnium oxide or aluminum oxide. For example, this allows a residual reflection of perceptibly less than 1% to be achieved in the case of a wavelength of 248 nm at angles of incidence in the range between approx. 72° and approx. 76°.
    Type: Application
    Filed: October 18, 2005
    Publication date: March 9, 2006
    Inventors: Ralf Kuschnereit, Hans-Jochen Paul, Jeffrey Erxmeyer