Patents by Inventor Johan Hendriks

Johan Hendriks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160013787
    Abstract: A method of differential signal transfer from a differential input Vinp and Vinn having a common mode input voltage that can be higher than the power supply voltage by providing an input chopper having first through fourth chopper transistors, each having a source, a drain and a gate, the input chopper having Vinp and Vinn as a differential input, providing an output chopper, capacitively coupling a differential output Voutp and Voutn of the input chopper to a differential input of the output chopper, capacitively coupling a clock to the input chopper and coupling the clock to the output chopper, the clock having a first phase and a second phase opposite from the first phase, the first phase being coupled to the gates of the first and second transistors and the second phase being coupled to the gates of the third and fourth transistors, and providing protection of the gates of the first through fourth transistors from excessive voltages. Various embodiments are disclosed.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Johan Hendrik Huijsing, Qinwen Fan, Kofi Afolabi Anthony Makinwa
  • Publication number: 20160003770
    Abstract: Device (100) for detecting a concentration of a substance in a fluid sample, the device comprising: a substrate (102); an insulating layer (104) arranged on the substrate (102); a plurality of individually electrically addressable semiconducting nanowires (106, 108, 110) arranged on the insulating layer (104), each one of the plurality of nanowires being covered by an insulating material (202, 204, 206) and arranged for sensing of the substance through an electrical characteristic of the nanowire; and a sample compartment (118) for providing the fluid sample in contact with each of the plurality of nanowires; wherein for each of the plurality of nanowires (106, 108, 110), at least one of cross sectional dimension, insulator thickness and type of insulating material is selected such that each of the nanowires has a different detection range, and such that the dynamic range of the device is higher than the dynamic range of each of the individual nanowires.
    Type: Application
    Filed: October 7, 2013
    Publication date: January 7, 2016
    Inventors: Johan Hendrik KLOOTWIJK, Marcel MULDER
  • Patent number: 9231496
    Abstract: The present invention relates to a method of manufacturing a capacitive micro-machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), and depositing a second electrode layer (50) on the second dielectric film (40), wherein the first dielectric film (20) and/or the second dielectric film (40) comprises a first layer comprising an oxide, a second layer comprising a high-k material, and a third layer comprising an oxide, and wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: January 5, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Dirksen, Ruediger Mauczok, Koray Karakaya, Johan Hendrik Klootwijk, Bout Marcelis, Marcel Mulder
  • Publication number: 20150301199
    Abstract: The present invention relates to a photon counting X-ray detector and detection method that effectively suppress polarization even under high flux conditions.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 22, 2015
    Inventors: Antonius Johannes Maria NELLISSEN, Frank VERBAKEL, Johan Hendrik KLOOTWIJK, Herfried Karl WIECZOREK
  • Publication number: 20150293054
    Abstract: An integrated circuit (100) comprising a substrate (110); an insulating layer (120) over said substrate; and a first nanowire element (140a) and a second nanowire element (140b) adjacent to said first nanowire element on said insulating layer; wherein the first nanowire element is arranged to be exposed to a medium comprising an analyte of interest, and wherein the second nanowire element is shielded from said medium by a shielding layer (150) over said second nanowire element. A sensing apparatus including such an IC, a sensing method using such an IC and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: October 16, 2013
    Publication date: October 15, 2015
    Inventors: Johan Hendrik Klootwijk, Marleen Mescher, Manuel Eduardo Alarcon-Rivero, Nico Maris Adriaan De Wild
  • Publication number: 20150294663
    Abstract: The present invention relates to a method of manufacturing a capacitive micro-machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), depositing a second electrode layer (50) on the second dielectric film (40), and patterning at least one of the deposited layers and films (10, 20, 30, 40, 50), wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
    Type: Application
    Filed: November 6, 2013
    Publication date: October 15, 2015
    Inventors: Johan Hendrik Klootwijk, Marcel Mulder, Nico Maris Adriaan De Wild, Koray Karakaya, Cornelius Antonius Van Den Huevel
  • Publication number: 20150276667
    Abstract: Integrated circuit (100) sensor array, comprising a semiconductor substrate (110); an insulating layer (120) over said substrate; an first transistor (140a) on said insulating layer, the first transistor comprising an exposed functionalized channel region (146a) in between a source region (142a) and a drain region (144) for sensing an analyte in a medium; a second transistor (140b) on said insulating layer, the second transistor comprising an exposed channel region (146b) in between a source region (142b) and a drain region (144) for sensing a potential of said medium; and a voltage bias generator (150) conductively coupled to the semiconductor substrate for providing said transistors with a bias voltage, said voltage bias generator being responsive to the second transistor. A sensing apparatus comprising such an IC and an analyte measurement method using such an IC are also disclosed.
    Type: Application
    Filed: October 11, 2013
    Publication date: October 1, 2015
    Inventors: Johan Hendrik Klootwijk, Marleen Mescher, Pascal De Graaf, Bout Marcelis
  • Publication number: 20150276668
    Abstract: Integrated circuit (100) comprising a semiconductor substrate (110); an insulating layer (120) over said substrate; an first transistor (140) on said insulating layer, said first transistor comprising an exposed channel region (146) in between a source region (142a, 142b) and a drain region (144); and a voltage waveform generator (150) conductively coupled to the semiconductor substrate for providing the first transistor with a bias voltage during a signal acquisition period, wherein the voltage waveform generator is arranged to generate an alternating bias voltage waveform (300) comprising a periodically increasing amplitude. A sensing apparatus including such an integrated circuit and a sensing method using such an integrated circuit are also disclosed.
    Type: Application
    Filed: October 7, 2013
    Publication date: October 1, 2015
    Inventors: Johan Hendrik Klootwijk, Marleen Mescher, Manuel Eduardo Alarcon-Rivero, Nico Maris Adriaan De Wild
  • Patent number: 9143092
    Abstract: A method of differential signal transfer from a differential input Vinp and Vinn having a common mode input voltage that can be higher than the power supply voltage by providing an input chopper having Vinp and Vinn as a differential input, providing an output chopper, capacitively coupling a differential output Voutp and Voutn of the input chopper to a differential input of the output chopper, capacitively coupling a clock to the input chopper and coupling the clock to the output chopper, the clock having a first phase and a second phase opposite from the first phase, the first phase being coupled to the gates of the first and second transistors and the second phase being coupled to the gates of the third and fourth transistors, and providing protection of the gates of the first through fourth transistors from excessive voltages. Various embodiments are disclosed.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 22, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Johan Hendrik Huijsing, Qinwen Fan, Kofi Afolabi Anthony Makinwa
  • Publication number: 20150194556
    Abstract: A device for adaptable wavelength conversion and a device for energy conversion are described. The device for adaptable wavelength conversion comprises at least one layer comprising a wavelength converting material and arranged to receive and re-emit a light beam. the device is further arranged to manipulate the at least one layer to operate in a closed state, in which a surface of the at least one layer is substantially covered with the wavelength converting material and to operate in an open state, in which the surface of the at least one layer is substantially uncovered with the wavelength converting material. The device for adaptable wavelength conversion can be applied in combination with a solar cell or photovoltaic cell thereby enabling the solar cell to receive radiation having a suitable spectrum under varying lighting conditions.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 9, 2015
    Inventors: ROGIER ADRIANUS HENRICA NIESSEN, WILLEM FRANKE PASVEER, JOHAN HENDRIK KLOOTWIJK
  • Publication number: 20150162852
    Abstract: The present invention relates to a method of manufacturing a capacitive micro-machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), and depositing a second electrode layer (50) on the second dielectric film (40), wherein the first dielectric film (20) and/or the second dielectric film (40) comprises a first layer comprising an oxide, a second layer comprising a high-k material, and a third layer comprising an oxide, and wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 11, 2015
    Inventors: PETER DIRKSEN, RUEDIGER MAUCZOK, KORAY KARAKAYA, JOHAN HENDRIK KLOOTWIJK, BOUT MARCELIS, MARCEL MULDER
  • Publication number: 20150054190
    Abstract: A method for manufacturing sustainable products with a blown, foam structure, wherein a mass comprising at least natural polymers such as starch is passed under pressure into a mould cavity (4) or through a mould die, and the mass is heated in the mould in a manner such as to stabilize the foamed structure to form the product, wherein the method comprises prefoaming of the mass prior to injection in the mould. Preferably, the prefoamed mass is kept under pressure until insertion in the mould. The invention further relates to an apparatus to be used in said method.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 26, 2015
    Inventors: Jan Wietze Huisman, Nynke Margaretha Zandstra, Johan Hendrik Adolf Arentsen, Hugo Mark Geerts
  • Publication number: 20140375168
    Abstract: The present invention relates to a method of manufacturing a capacitive micro-machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), and depositing a second electrode layer (50) on the second dielectric film (40), wherein the first dielectric film (20) and/or the second dielectric film (40) comprises a first layer comprising an oxide, a second layer comprising a high-k material, and a third layer comprising an oxide, and wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
    Type: Application
    Filed: January 18, 2013
    Publication date: December 25, 2014
    Inventors: Peter Dirksen, Ruediger Mauczok, Koray Karakaya, Johan Hendrik KlooTwijk, Bout Marcelis, Marcel Mulder
  • Patent number: 8916940
    Abstract: A method of forming a dielectric layer on a further layer of a semiconductor device is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer, the dielectric precursor compound comprising a metal ion from the group consisting of Yttrium and the Lanthanide series elements, and the further precursor compound comprising a metal ion from the group consisting of group IV and group V metals; and chemically converting the dielectric precursor compound and the further precursor compound into a dielectric compound and a further compound respectively, the further compound self-assembling during said conversion into a plurality of nanocluster nuclei within the dielectric layer formed from the first dielectric precursor compound. The nanoclusters may be dielectric or metallic in nature. Consequently, a dielectric layer is formed that has excellent charge trapping capabilities.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinesh Balakrishna Pillai Kochupurackal, Willem Frederik Adrianus Besling, Johan Hendrik Klootwijk, Robert Adrianus Maria Wolters, Freddy Roozeboom
  • Publication number: 20140365161
    Abstract: The invention relates to a system and method of analysing material as well as to an apparatus for analysing material, particularly, though not necessarily exclusively, biomaterial. The invention entails receiving holographic intensity data comprising at least a holographic intensity pattern associated with a sample of the material of interest and processing, by applying image processing algorithms and techniques, the received holographic intensity data at least to perform one or both steps of detecting and identifying at least one object of interest in the sample thereby at least to generate a suitable output.
    Type: Application
    Filed: November 30, 2012
    Publication date: December 11, 2014
    Inventors: Thegaran Naidoo, Johan Hendrik Swart, Suzanne Hugo, Pieter Van Rooyen
  • Patent number: 8901703
    Abstract: The electronic device comprises a network of at least one thin-film capacitor and at least one inductor on a first side of a substrate of a semiconductor material. The substrate has a resistivity sufficiently high to limit electrical losses of the inductor and being provided with an electrically insulating surface layer on its first side. A first and a second lateral pin diode are defined in the substrate, each of the pin diodes having a doped p-region, a doped n-region and an intermediate intrinsic region. The intrinsic region of the first pin diode is larger than that of the second pin diode.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: December 2, 2014
    Assignee: NXP, B.V.
    Inventors: Arnoldus Den Dekker, Johannes Frederik Dijkhuis, Nicolas Jonathan Pulsford, Jozef Thomas Martinus Van Beek, Freddy Roozeboom, Antonius Lucien Adrianus Maria Kemmeren, Johan Hendrik Klootwijk, Maarten Dirk-Johan Nollen
  • Publication number: 20140327944
    Abstract: The invention relates to a hologram, or holographic intensity data, processing method and system. The system implements the method which comprises receiving holographic intensity data comprising at least a holographic intensity pattern or image at a discrete location in a propagation space, the propagation space comprising the three-dimensional space over which light waves or illumination forming the holographic intensity pattern propagates. The method comprises determining one or more data key-points of at least one potential object of interest (19) in the received holographic intensity data, and also comparing the determined one or more data key-points to at least one pre-determined propagation space invariant object descriptor associated with an object to determine a match in order to identify or detect the object and determine its location in the propagation space.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 6, 2014
    Inventors: Thegaran Naidoo, Johan Hendrik Swart, Suzanne Hugo, Pieter Van Rooyen
  • Publication number: 20140232456
    Abstract: Fast-settling capacitive-coupled amplifiers are disclosed. The amplifiers use two Capacitive Coupled paths embedded in a Multipath Hybrid Nested Miller Compensation topology. One path is a direct high frequency path and the other path is a slower stabilization path. This combination results in a flat frequency response to and through the chopper frequency, and a fast settling response. Various exemplary embodiments are disclosed, including operational amplifier and instrumentation amplifier configurations.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Johan Hendrik Huijsing, Qinwen Fan, Kofi Afolabi Anthony Makinwa, Daihong Fu, Jun Wu, Lixia Zhou
  • Publication number: 20140174154
    Abstract: A method of selectively sensing the concentration of a target gas in polluted ambient air comprises the steps of: —providing a target gas sensor (220) sensitive to the target gas; —providing a first gas flow derived from the ambient air, from which first flow the target gas is substantially removed; —providing a second gas flow derived from the ambient air, substantially comprising the same target gas concentration as the ambient air; —exposing the target gas sensor to the first gas flow during a first time interval, and obtaining from the sensor a first output signal (Smf); —exposing the target gas sensor to the second gas flow during a second time interval not overlapping with the first time interval, and obtaining a second output signal (Smu); —calculating the difference (S?) between the first and the second output signals; calculating the concentration of the target gas from the calculated signal difference (S?).
    Type: Application
    Filed: July 9, 2012
    Publication date: June 26, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan Marra, Johan Hendrik Klootwijk, Jacobus Bernardus Giesbers, Nico Maris Adriaan De Wild, Marcel Bulder, Rogie Adrianus Henrica Niessen, Peter Van Der Linde
  • Patent number: 8743344
    Abstract: A cable connection between a first object and a second object includes a cable bundle of one or more cables having a certain length. One end of the cable bundle is fixed to the first object and another end of the bundle is fixed to the second object. A cable bundle holder configured to hold the cable bundle at a certain location along the length of the cable bundle, and a control system configured to control the position of the cable bundle holder with respect to the second object are presented. A control system for cable connection, and a method of reducing the transfer of vibrations from a first object to a second object via a cable connection are presented.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: June 3, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Hans Butler, Martinus Van Duijnhoven, Johan Hendrik Geerke, Joost De Pee, Cornelius Adrianus Lambertus De Hoon