Patents by Inventor Johann Alsmeier

Johann Alsmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9431409
    Abstract: A three dimensional memory device including a substrate and a semiconductor channel. At least one end portion of the semiconductor channel extends substantially perpendicular to a major surface of the substrate. The device also includes at least one charge storage region located adjacent to semiconductor channel and a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The device also includes an etch stop layer located between the substrate and the plurality of control gate electrodes.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: August 30, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yao-Sheng Lee, Johann Alsmeier
  • Patent number: 9425299
    Abstract: A cylindrical confinement electron gas confined within a two-dimensional cylindrical region can be formed in a vertical semiconductor channel extending through a plurality of electrically conductive layers comprising control gate electrodes. A memory film in a memory opening is interposed between the vertical semiconductor channel and the electrically conductive layers. The vertical semiconductor channel includes a wider band gap semiconductor material and a narrow band gap semiconductor material. The cylindrical confinement electron gas is formed at an interface between the wider band gap semiconductor material and the narrow band gap semiconductor material. As a two-dimensional electron gas, the cylindrical confinement electron gas can provide high charge carrier mobility for the vertical semiconductor channel, which can be advantageously employed to provide higher performance for a three-dimensional memory device.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: August 23, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Peter Rabkin, Jayavel Pachamuthu, Johann Alsmeier, Masaaki Higashitani
  • Patent number: 9419135
    Abstract: A monolithic three dimensional NAND string includes a plurality of control gate electrodes extending substantially parallel to a major surface of a substrate, and at least one trench extending substantially perpendicular to the major surface of the substrate. The trench is filled with at least a first trench material and a second trench material. The first trench material includes a material under a first magnitude of a first stress type, and the second trench material includes a material under no stress, a second stress type opposite the first stress type, or a second magnitude of the first stress type lower than the first magnitude of the first stress type to offset warpage of the substrate due to the stress imposed by at least one of the first trench material or the plurality of control gate electrodes on the substrate.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: August 16, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Matthias Baenninger, Jayavel Pachamuthu, Johann Alsmeier
  • Publication number: 20160233227
    Abstract: A stack including an alternating plurality of first material layers and second material layers is provided. A memory opening is formed and at least a contiguous semiconductor material portion including a semiconductor channel is formed therein. The contiguous semiconductor material portion includes an amorphous or polycrystalline semiconductor material. A metallic material portion is provided at a bottom surface of the semiconductor channel, at a top surface of the semiconductor channel, or on portions of an outer sidewall surface of the semiconductor channel. An anneal is performed to induce diffusion of a metal from the metallic material portion through the semiconductor channel, thereby inducing conversion of the amorphous or polycrystalline semiconductor material into a crystalline semiconductor material. The crystalline semiconductor material has a relatively large grain size due to the catalytic crystallization process, and can provide enhanced charge carrier mobility.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Yanli ZHANG, Raghuveer S. MAKALA, Johann ALSMEIER
  • Publication number: 20160225866
    Abstract: A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a metallic barrier material portion can be formed in each backside recess. A molybdenum-containing portion can be formed in each backside recess. Each backside recess can be filled with a molybdenum-containing portion alone, or can be filled with a combination of a molybdenum-containing portion and a metallic material portion including a material other than molybdenum.
    Type: Application
    Filed: June 26, 2015
    Publication date: August 4, 2016
    Inventors: Somesh Peri, Raghuveer S. Makala, Sateesh Koka, Yao-Sheng Lee, Johann Alsmeier, George Matamis
  • Publication number: 20160211023
    Abstract: Methods for performing memory operations on a memory array that includes inverted NAND strings are described. The memory operations may include erase operations, read operations, programming operations, program verify operations, and erase verify operations. An inverted NAND string may include a string of inverted floating gate transistors or a string of inverted charge trap transistors. In one embodiment, an inverted floating gate transistor may include a tunneling layer between a floating gate of the inverted floating gate transistor and a control gate of the inverted floating gate transistor. The arrangement of the tunneling layer between the floating gate and the control gate allows electrons to be added to or removed from the floating gate via F-N tunneling between the floating gate and the control gate. The inverted NAND string may be formed above a substrate and oriented such that the inverted NAND string is orthogonal to the substrate.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Yanli Zhang, George Samachisa, Johann Alsmeier, Jian Chen
  • Patent number: 9397093
    Abstract: A method of making a monolithic three dimensional NAND string includes forming a stack of alternating layers of a first material and a second material, etching the stack to form a front side opening in the stack, selectively forming a plurality of discrete semiconductor, metal or silicide charge storage regions on portions of the second material layers exposed in the front side opening, forming a tunnel dielectric layer and semiconductor channel layer in the front side opening, etching the stack to form a back side opening in the stack, removing at least a portion of the second material layers through the back side opening to form back side recesses between the first material layers, forming a blocking dielectric in the back side recesses through the back side opening, and forming control gates over the blocking dielectric in the back side recesses through the back side opening.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 19, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Raghuveer S. Makala, Johann Alsmeier
  • Patent number: 9397107
    Abstract: A method of making a three dimensional NAND string includes providing a stack of alternating first material layers and second material layers over a substrate. The method further includes forming a front side opening in the stack, forming a tunnel dielectric in the front side opening, forming a semiconductor channel in the front side opening over the tunnel dielectric and forming a back side opening in the stack. The method also includes selectively removing the second material layers through the back side opening to form back side recesses between adjacent first material layers, forming a metal charge storage layer in the back side opening and in the back side recesses and forming discrete charge storage regions in the back side recesses by removing the metal charge storage layer from the back side opening and selectively recessing the metal charge storage layer in the back side recesses.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 19, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Raghuveer S. Makala, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Yanli Zhang, George Matamis, Johann Alsmeier
  • Patent number: 9397111
    Abstract: A fabrication process for a 3D memory structure provides a single crystal silicon channel for a drain-side select gate (SGD) transistor using a laser thermal anneal (LTA). The 3D memory structure includes a stack formed from an array of alternating conductive and dielectric layers. A NAND string is formed by filling a memory hole with memory films, including a charge trapping material, a tunnel oxide and a polysilicon channel. In one case, a separate oxide and polysilicon forms the SGD transistor gate oxide and channel respectively, where LTA is performed on the polysilicon. In another case, the same oxide and polysilicon are used for the SGD transistor and the memory cells. A portion of the polysilicon is converted to single crystal silicon. A back side of the single crystal silicon is subject to epitaxial growth and thermal oxidation via a void in a control gate layer.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 19, 2016
    Assignee: SanDisk Technologies LLC
    Inventors: Murshed Chowdhury, Yanli Zhang, Jin Liu, Raghuveer S Makala, Johann Alsmeier
  • Publication number: 20160204117
    Abstract: Alignment between memory openings through multiple tier structures can be facilitated employing a temporary landing pad. The temporary landing pad can have a greater area than the horizontal cross-sectional area of a first memory opening through a first tier structure including a first alternating stack of first insulating layers and first spacer material layers. An upper portion of a first memory film is removed, and a sidewall of an insulating cap layer that defines the first memory opening can be laterally recessed to form a recessed cavity. A sacrificial fill material is deposited in the recessed cavity to form a sacrificial fill material portion, which functions as the temporary landing pad for a second memory opening that is subsequently formed through a second tier structure including second insulating layers and second spacer material layers. A memory stack structure can be formed through the first and second tier structures.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 14, 2016
    Inventors: Jin Liu, Yanli Zhang, Murshed Chowdhury, Raghuveer S. Makala, Johann Alsmeier
  • Publication number: 20160181272
    Abstract: Disclosed herein are techniques for fabricating 3D NAND memory devices having a mono-crystalline silicon semiconductor vertical NAND channel. Memory holes are formed in horizontal layers of material above a substrate. A vertically-oriented NAND string is formed in each of the memory holes. Forming the vertically-oriented NAND string channel comprises growing monolithic crystalline silicon upwards in the memory hole from the substrate through all of the plurality of horizontal layers of material. Vapor phase epitaxial growth may be used grow the monolithic crystalline silicon upwards from the bottom of the vertically-oriented NAND channel. Alternatively, a nanowire of monolithic crystalline silicon is synthesized in the memory hole from the substrate at the bottom of the vertically-oriented NAND channel upwards to the top of the vertically-oriented NAND channel.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Applicant: SanDisk Technologies Inc.
    Inventors: Peter Rabkin, Jayavel Pachamuthu, Johann Alsmeier, Masaaki Higashitani
  • Publication number: 20160172370
    Abstract: A plurality of blocking dielectric portions can be formed between a memory stack structure and an alternating stack of first material layers and second material layers by selective deposition of a dielectric material layer. The plurality of blocking dielectric portions can be formed after removal of the second material layers selective to the first material layers by depositing a dielectric material on surfaces of the memory stack structure while avoiding deposition on surfaces of the first material layers. A deposition inhibitor material layer or a deposition promoter material layer can be optionally employed. Alternatively, the plurality of blocking dielectric portions can be formed on surfaces of the second material layers while avoiding deposition on surfaces of the first material layers after formation of the memory opening and prior to formation of the memory stack structure. The plurality of blocking dielectric portions are vertically spaced annular structures.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Raghuveer S. MAKALA, Rahul SHARANGPANI, Senaka Krishna KANAKAMEDALA, Xiaofeng LIANG, George MATAMIS, Sateesh KOKA, Johann ALSMEIER
  • Patent number: 9368510
    Abstract: A non-volatile storage device with memory cells having a high-k charge storage region, as well as methods of fabrication, is disclosed. The charge storage region has three or more layers of dielectric materials. At least one layer is a high-k material. The high-k layer(s) has a higher trap density as compared to Si3N4. High-k dielectrics in the charge storage region enhance capacitive coupling with the memory cell channel, which can improve memory cell current, program speed, and erase speed. The charge storage region has a high-low-high conduction band offset, which may improve data retention. The charge storage region has a low-high-low valence band offset, which may improve erase.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: June 14, 2016
    Assignee: SanDisk Technologies Inc.
    Inventors: Peter Rabkin, Jayavel Pachamuthu, Johann Alsmeier, Masaaki Higashitani
  • Publication number: 20160163729
    Abstract: A memory stack structure includes a cavity including a back gate electrode, a back gate dielectric, a semiconductor channel, and at least one charge storage element. In one embodiment, a line trench can be filled with a memory film layer, and a plurality of semiconductor channels can straddle the line trench. The back gate electrode can extend along the lengthwise direction of the line trench. In another embodiment, an isolated memory opening overlying a patterned conductive layer can be filled with a memory film, and the back gate electrode can be formed within a semiconductor channel and on the patterned conductive layer. A dielectric cap portion electrically isolates the back gate electrode from a drain region. The back gate electrode can be employed to bias the semiconductor channel, and to enable sensing of multinary bits corresponding to different amounts of electrical charges stored in a memory cell.
    Type: Application
    Filed: December 9, 2014
    Publication date: June 9, 2016
    Inventors: Yanli ZHANG, Johann ALSMEIER, Yingda DONG, Akira MATSUDAIRA
  • Publication number: 20160163389
    Abstract: A memory stack structure includes a cavity including a back gate electrode, a back gate dielectric, a semiconductor channel, and at least one charge storage element. In one embodiment, a line trench can be filled with a memory film layer, and a plurality of semiconductor channels can straddle the line trench. The back gate electrode can extend along the lengthwise direction of the line trench. In another embodiment, an isolated memory opening overlying a patterned conductive layer can be filled with a memory film, and the back gate electrode can be formed within a semiconductor channel and on the patterned conductive layer. A dielectric cap portion electrically isolates the back gate electrode from a drain region. The back gate electrode can be employed to bias the semiconductor channel, and to enable sensing of multinary bits corresponding to different amounts of electrical charges stored in a memory cell.
    Type: Application
    Filed: December 9, 2014
    Publication date: June 9, 2016
    Inventors: Yanli ZHANG, Johann ALSMEIER, Yinda DONG, Akira MATSUDAIRA
  • Patent number: 9355727
    Abstract: A memory stack structure includes a cavity including a back gate electrode, a back gate dielectric, a semiconductor channel, and at least one charge storage element. In one embodiment, a line trench can be filled with a memory film layer, and a plurality of semiconductor channels can straddle the line trench. The back gate electrode can extend along the lengthwise direction of the line trench. In another embodiment, an isolated memory opening overlying a patterned conductive layer can be filled with a memory film, and the back gate electrode can be formed within a semiconductor channel and on the patterned conductive layer. A dielectric cap portion electrically isolates the back gate electrode from a drain region. The back gate electrode can be employed to bias the semiconductor channel, and to enable sensing of multinary bits corresponding to different amounts of electrical charges stored in a memory cell.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 31, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Yanli Zhang, Johann Alsmeier, Yinda Dong, Akira Matsudaira
  • Patent number: 9356031
    Abstract: A method of making a monolithic three dimensional NAND string includes forming a stack of alternating first and second material layers over a substrate, etching the stack to form a front side opening, partially removing the second material layers through the front side opening to form front side recesses, forming a first blocking dielectric in the front side recesses, forming charge storage regions over the first blocking dielectric in the front side recesses, forming a tunnel dielectric layer and a semiconductor channel over the charge storage regions in the front side opening, etching the stack to form a back side opening, removing the second material layers through the back side opening to form back side recesses using the first blocking dielectric as an etch stop, forming a second blocking dielectric in the back side recesses, and forming control gates over the second blocking dielectric in the back side recesses.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 31, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Yao-Sheng Lee, Jayavel Pachamuthu, Raghuveer S. Makala, George Matamis, Johann Alsmeier, Henry Chien
  • Publication number: 20160149004
    Abstract: Disclosed herein are 3D NAND memory devices having an oxide semiconductor vertical NAND channel and methods for forming the same. The oxide semiconductor may have a crystalline structure. The channel of the vertically-oriented NAND string may be cylindrically shaped. The crystalline structure has an axis that may be aligned crystalline with respect to the cylindrical shape of the vertically-oriented channel substantially throughout the vertically-oriented channel. The crystalline structure may have a first axis that is aligned parallel to the vertical channel, a second axis that is aligned perpendicular to a surface of the cylindrically shaped channel, etc.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 26, 2016
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Peter Rabkin, Johann Alsmeier, Masaaki Higashitani
  • Publication number: 20160141419
    Abstract: A monolithic three dimensional NAND string includes a plurality of control gate electrodes extending substantially parallel to a major surface of a substrate, and at least one trench extending substantially perpendicular to the major surface of the substrate. The trench is filled with at least a first trench material and a second trench material. The first trench material includes a material under a first magnitude of a first stress type, and the second trench material includes a material under no stress, a second stress type opposite the first stress type, or a second magnitude of the first stress type lower than the first magnitude of the first stress type to offset warpage of the substrate due to the stress imposed by at least one of the first trench material or the plurality of control gate electrodes on the substrate.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Inventors: Matthias BAENNINGER, Jayavel PACHAMUTHU, Johann ALSMEIER
  • Publication number: 20160141294
    Abstract: A contact via structure can include a ruthenium portion formed by selective deposition of ruthenium on a semiconductor surface at the bottom of a contact trench. The ruthenium-containing portion can reduce contact resistance at the interface with an underlying doped semiconductor region. At least one conductive material portion can be formed in the remaining volume of the contact trench to form a contact via structure. Alternatively or additionally, a contact via structure can include a tensile stress-generating portion and a conductive material portion. In case the contact via structure is formed through an alternating stack of insulating layers and electrically conductive layers that include a compressive stress-generating material, the tensile stress-generating portion can at least partially cancel the compressive stress generated by the electrically conductive layers. The conductive material portion of the contact via structure can include a metallic material or a doped semiconductor material.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 19, 2016
    Inventors: Somesh Peri, Sateesh Koka, Raghuveer S. Makala, Rahul Sharangpani, Matthias Baenninger, Jayavel Pachamuthu, Johann Alsmeier