Patents by Inventor Johann Alsmeier

Johann Alsmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160049421
    Abstract: A monolithic three dimensional NAND string includes a plurality of control gate electrodes extending substantially parallel to a major surface of a substrate, a memory opening extending substantially perpendicular to the major surface of the substrate and filled with a memory opening material including a memory film, and a dummy opening extending substantially perpendicular to the major surface of the substrate and filled with a dummy channel material which is different from the memory opening material. The dummy channel material has a higher Young's modulus than the memory opening material to offset warpage of the substrate due to the one of compressive and tensile stress imposed by the plurality of control gate electrodes on the substrate.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 18, 2016
    Inventors: Yanli ZHANG, Raghuveer S. MAKALA, Johann ALSMEIER, Yao-Sheng LEE, Tiger XU
  • Publication number: 20160043093
    Abstract: A method of making a monolithic three dimensional NAND string includes forming a stack of alternating first and second material layers over a substrate, etching the stack to form a front side opening, partially removing the second material layers through the front side opening to form front side recesses, forming a first blocking dielectric in the front side recesses, forming charge storage regions over the first blocking dielectric in the front side recesses, forming a tunnel dielectric layer and a semiconductor channel over the charge storage regions in the front side opening, etching the stack to form a back side opening, removing the second material layers through the back side opening to form back side recesses using the first blocking dielectric as an etch stop, forming a second blocking dielectric in the back side recesses, and forming control gates over the second blocking dielectric in the back side recesses.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 11, 2016
    Inventors: Yao-Sheng Lee, Jayavel Pachamuthu, Raghuveer S. Makala, George Matamis, Johann Alsmeier, Henry Chien
  • Patent number: 9230979
    Abstract: A high dielectric constant (high-k) dielectric material layer having a dielectric constant greater than 7.9 is formed a substrate. A stack of alternating layers comprising first material layers and second material layers is formed over the high-k dielectric material layer. A memory opening is formed through the stack employing a top surface of the high-k dielectric material layer as an etchstop layer, thereby minimizing an overetch. A memory film and a semiconductor channel are subsequently formed. During formation of a backside contact trench, the high-k dielectric material layer can be employed as an etch stop layer. Thus, the high-k dielectric material layer can be employed as a common etch stop layer for formation of the memory opening and the backside contact trench.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Jayavel Pachamuthu, Johann Alsmeier
  • Patent number: 9227456
    Abstract: A three-dimensional memory is formed as an array of memory elements across multiple layers positioned at different distances above a semiconductor substrate. Cylindrical stacks of memory elements are formed where a cylindrical opening has read/write material deposited along its wall, and a cylindrical vertical bit line formed along its central axis. Memory elements formed on either side of such a cylinder may include sheet electrodes that extend into the read/write material.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 5, 2016
    Assignee: SanDisk 3D LLC
    Inventors: Henry Chien, Yao-Sheng Lee, George Samachisa, Johann Alsmeier
  • Patent number: 9230980
    Abstract: A memory film layer is formed in a memory opening through an alternating stack of first material layers and second material layers. A sacrificial material layer is deposited on the memory film layer. Horizontal portions of the sacrificial material layer and the memory film layer at the bottom of the memory opening is removed by an anisotropic etch to expose a substrate underlying the memory opening, while vertical portions of the sacrificial material layer protect vertical portions of the memory film layer. After removal of the sacrificial material layer selective to the memory film, a doped semiconductor material layer can be formed directly on the exposed material in the memory opening and on the memory film as a single material layer to form a semiconductor channel of a memory device.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Peter Rabkin, Jayavel Pachamuthu, Johann Alsmeier
  • Patent number: 9230976
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventor: Johann Alsmeier
  • Patent number: 9230987
    Abstract: A first stack of alternating layers including first electrically conductive layers and first electrically insulating layers is formed with first stepped surfaces and a first dielectric material portion thereupon. Dielectric pillar structures including a dielectric metal oxide can be formed through the first stepped surfaces. Lower memory openings can be formed, and filled with a disposable material or a lower memory opening structure including a lower semiconductor channel and a doped semiconductor region. At least one dielectric material layer and a second stack of alternating layers including second electrically conductive layers and second electrically insulating layers can be sequentially formed. Upper memory openings can be formed through the second stack and the at least one dielectric material layer. A memory film and a semiconductor channel can be formed after removal of the disposable material, or an upper semiconductor channel can be formed on the doped semiconductor region.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Jayavel Pachamuthu, Johann Alsmeier, Henry Chien
  • Patent number: 9230974
    Abstract: Methods of making a monolithic three dimensional NAND string may enable selective removal of a blocking dielectric material, such as aluminum oxide, without otherwise damaging the device. Blocking dielectric may be selectively removed from the back side (e.g., slit trench) and/or front side (e.g., memory opening) of the NAND string. Also disclosed are NAND strings made in accordance with the embodiment methods.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Jayavel Pachamuthu, Johann Alsmeier, George Matamis, Henry Chien
  • Patent number: 9230973
    Abstract: A method of fabricating a semiconductor device, such as a three-dimensional NAND memory string, includes forming a first stack of alternating layers of a first material and a second material different from the first material over a substrate, removing a portion of the first stack to form a first trench, filling the trench with a sacrificial material, forming a second stack of alternating layers of the first material and the second material over the first stack and the sacrificial material, removing a portion of the second stack to the sacrificial material to form a second trench, and removing the sacrificial material to form a continuous trench through the first stack and the second stack.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: January 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Jayavel Pachamuthu, Johann Alsmeier, Raghuveer S. Makala, Yao-Sheng Lee
  • Publication number: 20150380424
    Abstract: A method of making a three dimensional NAND string includes providing a stack of alternating first material layers and second material layers over a substrate. The method further includes forming a front side opening in the stack, forming a tunnel dielectric in the front side opening, forming a semiconductor channel in the front side opening over the tunnel dielectric and forming a back side opening in the stack. The method also includes selectively removing the second material layers through the back side opening to form back side recesses between adjacent first material layers, forming a metal charge storage layer in the back side opening and in the back side recesses and forming discrete charge storage regions in the back side recesses by removing the metal charge storage layer from the back side opening and selectively recessing the metal charge storage layer in the back side recesses.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Raghuveer S. Makala, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Yanli Zhang, George Matamis, Johann Alsmeier
  • Publication number: 20150380418
    Abstract: A NAND memory cell region of a NAND device includes a conductive source line that extends substantially parallel to a major surface of a substrate, a first semiconductor channel that extends substantially perpendicular to a major surface of the substrate, and a second semiconductor channel that extends substantially perpendicular to the major surface of the substrate. At least one of a bottom portion and a side portion of the first semiconductor channel contacts the conductive source line and at least one of a bottom portion and a side portion of the second semiconductor channel contacts the conductive source line.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Yanli Zhang, Go Shoji, Johann Alsmeier, Jayavel Pachamuthu, Yingda Dong, Jiahui Yuan
  • Publication number: 20150380423
    Abstract: A method of making a monolithic three dimensional NAND string includes providing a first stack of alternating first material layers and second material layers over a major surface of a substrate. The first material layers include first silicon oxide layers, the second material layers include second silicon oxide layers, and the first silicon oxide layers have a different etch rate from the second silicon oxide when exposed to the same etching medium. The first stack includes a back side opening, a front side opening, and at least a portion of a floating gate layer, a tunnel dielectric and a semiconductor channel located in the front side opening. The method also includes selectively removing the first material layers through the back side opening to form back side control gate recesses between adjacent second material layers.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Senaka Krishna Kanakamedala, Yanli Zhang, Raghuveer S. Makala, Yao-Sheng Lee, Johann Alsmeier, George Matamis
  • Publication number: 20150364488
    Abstract: A memory device and a method of making a memory device that includes a stack of alternating layers of a first material and a second material different from the first material over a substrate, where the layers of the second material form a plurality of conductive control gate electrodes. A plurality of NAND memory strings extend through the stack, where each NAND memory string includes a semiconductor channel which contains at least a first portion which extends substantially perpendicular to a major surface of the substrate and at least one memory film located between the semiconductor channel and the plurality of conductive control gate electrodes. A source line including a metal silicide material extends through the stack.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 17, 2015
    Inventors: Jayavel PACHAMUTHU, Yingda DONG, Johann ALSMEIER
  • Publication number: 20150357413
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, where at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate, an interlevel insulating layer located between adjacent control gate electrodes, a blocking dielectric layer located in contact with the plurality of control gate electrodes and an interlevel insulating layer, a charge storage layer located at least partially in contact with the blocking dielectric layer, and a tunnel dielectric located between the charge storage layer and the semiconductor channel. The charge storage layer has a curved profile.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Applicant: SanDisk Technologies Inc.
    Inventors: Yanli Zhang, Matthias Baenninger, Akira Matsudaira, Yao-Sheng Lee, Johann Alsmeier
  • Patent number: 9209031
    Abstract: A fabrication process is provided for a 3D stacked non-volatile memory device which provides a source contact to memory holes at a bottom of a stack. The stack includes alternating control gate layers and dielectric layers on a substrate, and memory holes are etched through the stack. The process avoids the need to etch through films at the bottom of the memory hole. Instead, a path is formed from the bottom of the memory hole to the top of the stack. The path includes a horizontal portion using a voided trench in a substrate dielectric, and a passageway etched in the stack. The memory films, a channel material and a dielectric material are deposited throughout the interior surfaces of the void and the memory holes concurrently. The path is filled with metal to form a continuous, low resistance conductive path.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: December 8, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Matthias Baenninger, Johann Alsmeier, Akira Matsudaira, Jayavel Pachamuthu
  • Patent number: 9208883
    Abstract: Three-dimensional NAND stacked memory devices include a stack including alternating word line and dielectric layers and a plurality of NAND strings of memory cells formed in memory holes which extend through the layers. Each memory cell includes a control gate formed by one of the word line layers, and multiple selector devices, each selector device coupled to an end of a corresponding NAND string. The NAND strings are disposed above a substrate, and the selector devices are disposed in the substrate.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: December 8, 2015
    Assignee: SanDisk Technologies Inc.
    Inventor: Johann Alsmeier
  • Patent number: 9165940
    Abstract: A method of making a monolithic three dimensional NAND string, including providing a stack of alternating first material layers and second material layers different from the first material layer over a substrate, the stack comprising at least one opening containing a charge storage material comprising a silicide layer, a tunnel dielectric on the charge storage material in the at least one opening, and a semiconductor channel on the tunnel dielectric in the at least one opening, selectively removing the second material layers without removing the first material layers from the stack and forming control gates between the first material layers.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 20, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Henry Chien, Johann Alsmeier, George Samachisa, Henry Chin, George Matamis, Yuan Zhang, James Kai, Vinod Purayath, Donovan Lee
  • Publication number: 20150294978
    Abstract: A method of making a vertical NAND device includes forming a lower portion of a memory stack over a substrate, forming a lower portion of memory openings in the lower portion of the memory stack, and forming a sacrificial material portion including an encapsulated cavity. The method also includes forming an upper portion of the memory stack over the lower portion of the memory stack and over the sacrificial material, forming an upper portion of the memory openings in the upper portion of the memory stack to expose the sacrificial material in the lower portion of the memory openings, removing the sacrificial material portion to connect the lower portion of the memory openings with a respective upper portion of the memory openings to form continuous memory openings, and forming a semiconductor channel in each continuous memory opening.
    Type: Application
    Filed: June 24, 2015
    Publication date: October 15, 2015
    Inventors: Zhenyu LU, Sateesh KOKA, James KAI, Raghuveer S. MAKALA, Yao-Sheng LEE, Jayavel PACHAMUTHU, Johann ALSMEIER, Henry CHIEN
  • Patent number: 9159739
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, with at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, and a plurality of copper containing control gate electrodes extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The NAND string also includes a blocking dielectric located over the plurality of control gates, a tunnel dielectric in contact with the semiconductor channel, and at least one charge storage region located between the blocking dielectric and the tunnel dielectric.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 13, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Raghuveer S. Makala, Yanli Zhang, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Rahul Sharangpani, George Matamis, Johann Alsmeier, Seiji Shimabukuro, Genta Mizuno, Naoki Takeguchi
  • Publication number: 20150255481
    Abstract: A fabrication process is provided for a 3D stacked non-volatile memory device which provides a source contact to memory holes at a bottom of a stack. The stack includes alternating control gate layers and dielectric layers on a substrate, and memory holes are etched through the stack. The process avoids the need to etch through films at the bottom of the memory hole. Instead, a path is formed from the bottom of the memory hole to the top of the stack. The path includes a horizontal portion using a voided trench in a substrate dielectric, and a passageway etched in the stack. The memory films, a channel material and a dielectric material are deposited throughout the interior surfaces of the void and the memory holes concurrently. The path is filled with metal to form a continuous, low resistance conductive path.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicant: SanDisk Technologies Inc.
    Inventors: Matthias Baenninger, Johann Alsmeier, Akira Matsudaira, Jayavel Pachamuthu