Patents by Inventor Johann Engelhardt

Johann Engelhardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6806953
    Abstract: The invention discloses a fluorescence microscope comprising a light source that emits excitation light for illumination of a specimen, means for defining a two-dimensional search region for the excitation and detection wavelengths, means for selecting a subregion from the search region, at least one detector that detects detected light proceeding from the specimen, and a display for displaying an image of at least a portion of the specimen. Furthermore the invention discloses a method for fluorescence microscopy.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: October 19, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann
  • Patent number: 6801359
    Abstract: The invention relates to an optical arrangement provided for a spectral fanning out of a light beam (1), preferably the detection beam path of a confocal microscope, especially for the subsequent splitting of the fanned out beam (2) out of the dispersion plane thereof. The optical arrangment is also provided for detecting the fanned out spectral regions (4), whereby the incoming light beam (1) is focused on a pinhole (7). The invention is characterized in that the pinhole (7) has a polygonal passageway (8) in order to realize a high dynamic response when the light beam is split into spectral regions (4) or into spectral colors.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: October 5, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Heinrich Ulrich, Hilmar Gugel
  • Publication number: 20040190133
    Abstract: A scanning microscope has a light source that emits illuminating light for illumination of a specimen, at least one first detector for detection of the detected light proceeding from the specimen, an objective arranged in both an illumination beam path and a detection beam path, and a coupling-out element that is selectably for descan detection and non-descan detection positionable in the illumination and detection beam path. A light-guiding fiber is provided for transporting at least a portion of the detection light from the coupling-out element to the first detector.
    Type: Application
    Filed: January 27, 2004
    Publication date: September 30, 2004
    Applicant: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Werner Knebel, Heinrich Ulrich
  • Patent number: 6796699
    Abstract: A method for illuminating an object (79). The method is characterized by the steps of injecting (1) the light beam (13) from a laser (9) into a microstructured optical element (19), which spectrally broadens the light of the light beam (13), shaping (3) the spectrally broadened light (31) to form an illumination light beam (29), and directing (5) the illumination light beam (29) onto the object (79). An instrument (7) for illuminating an object (79). The instrument comprises a laser (9) that emits a light beam (13), which is directed onto a microstructured optical element (19) that spectrally broadens the light from the laser. A optical means (33) which shapes the spectrally broadened light (31) to form an illumination light beam (29) is arranged downstream of the microstructured optical element (19).
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: September 28, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Holger Birk, Rafael Storz, Johann Engelhardt, Kyra Moellmann
  • Patent number: 6785302
    Abstract: The invention relates to an optical system in the ray path of a confocal fluorescence microscope, comprising at least one laser light source (1, 2), a device positioned in the illuminating/detecting beam (3, 4, 5) for separating the exciting light (8) from the fluorescent light (9), an objective (10) arranged between the device and the object (7), and a detector (11) positioned downstream of the device situated in the detecting beam (5). The aim of the invention is to increase the fluorescence yield of the system while retaining its compact structure.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: August 31, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Heinrich Ulrich, William C. Hay
  • Patent number: 6781752
    Abstract: A confocal scanning microscope has an illuminating beam path and at least one light source. The light of the light source is coupled into a fiber in which laser transitions can be induced. At least laser light induced in the fiber serves for specimen illumination after passing through an excitation pinhole.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: August 24, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann
  • Patent number: 6771405
    Abstract: The present invention concerns a method and an apparatus for scanning a specimen (1) with a light beam (2) of a light source (3), preferably in confocal scanning microscopy, the light beam (2) being deflected with a beam deflection device (4) and the scanning operation being controlled by a control device (5). A specimen can be scanned with the greatest possible timing accuracy in order to trigger a measurement operation, during or shortly after an external influence. The method and the apparatus according to the present invention are characterized in that as a function of at least one definable scan position (10), the control device (5) makes available at least one signal (11) for influencing the specimen (1) and/or for triggering a measurement operation.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 3, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventor: Johann Engelhardt
  • Patent number: 6754003
    Abstract: A scanning microscope possesses at least one illumination source for emitting an illuminating beam that is conveyed via a beam deflection device and an optical system to a specimen and scans the latter, the beam deflection device defining at least one illuminating beam rotation point. A device for axial displacement in particular of the beam deflection device, or of a lens preceding the objective, is provided for imaging of an image of the illuminating beam rotation point into the pupil of the objective.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: June 22, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventor: Johann Engelhardt
  • Patent number: 6754000
    Abstract: An optical arrangement having a light source, preferably a laser, for generating a light beam (1); at least one acoustooptical deflection device (3) for the light beam (1); and a correction device for correcting beam aberrations produced by the deflection device (3) is configured, in the interest of flexible and reliable correction of aberrations occurring because of the deflection, in such a way that the correction device comprises an adaptive optical system (2). Also described is a method for the deflection of light beams (1) with a light source, preferably a laser, for generating a light beam (1); at least one acoustooptical deflection device (3) for the light beam (1); and a correction device for correcting beam aberrations produced by the deflection device (3), in which an adaptive optical system (2) is used as the correction device.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: June 22, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann
  • Publication number: 20040114226
    Abstract: A confocal scanning microscope has an illuminating beam path and at least one light source. The light of the light source is coupled into a fiber in which laser transitions can be induced. At least laser light induced in the fiber serves for specimen illumination after passing through an excitation pinhole.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 17, 2004
    Applicant: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann
  • Publication number: 20040114225
    Abstract: A microscope (1), preferably a confocal laser scanning microscope, having at least one light source, a detector, and two objectives (2), one of the objectives (2) being arranged on each of the two sides of the specimen plane (3) and the objectives (2) being directed toward one another and having a common focus; and at least one beam splitter (5) for distributing the illuminating light (6) to the objectives (2), and a beam recombiner (5) for combining the detected light (7) coming from the objectives (2), being provided in the illumination/detection beam path (4), is characterized, for selectable, subsequent implementation of ultrahigh-resolution microscope techniques, in that the objectives (2) and the beam splitter/beam recombiner (5) are grouped into a modular assembly (8); and the assembly (8) has an interface (9) for connection to the illumination/detection beam path (4) of the microscope (1).
    Type: Application
    Filed: November 21, 2003
    Publication date: June 17, 2004
    Applicant: LEICA MICROSYSTEMS HEIDELBERG GmbH
    Inventors: Johann Engelhardt, Joachim Bradl
  • Patent number: 6738190
    Abstract: A method for examining a specimen (11) by means of a confocal scanning microscope having at least one light source (1), preferably a laser, to generate an illuminating light beam (4) for the specimen (11), and a beam deflection device (9) to guide the illuminating light beam (4) over the specimen (11) comprises the following method steps: Firstly a preview image is acquired. Then at least one region of interest in the preview image is marked. This is followed by allocation of individual illuminating light beam wavelengths and/or illuminating light beam power levels to the region or regions. Illumination of the region or regions of the specimen (11) in accordance with the allocation is then accomplished. Lastly, the reflected and/or fluorescent light proceeding from the specimen (11) is detected.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: May 18, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann, Werner Knebel
  • Patent number: 6737635
    Abstract: The present invention concerns an apparatus for combining light from at least two laser light sources, preferably in the context of confocal scanning microscopy, and in order to make laser light sources of low output power usable as light sources, in particular for confocal scanning microscopy, is characterized in that the light from the laser light sources has at least approximately the same wavelength; and that at least one beam combining unit that combines the light beams in at least largely lossless fashion is provided.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 18, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann, Rafael Storz, Heinrich Ulrich, Joerg Bewersdorf, Holger Birk
  • Patent number: 6738189
    Abstract: The invention relates to a microscope, in particular a confocal microscope, designed to measure an object from several angular positions while avoiding any rotation of the object to be measured. The microscope has an optical device for rotation of the image to be positioned in the ray path of the microscope.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: May 18, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Heinrich Ulrich, Johann Engelhardt
  • Patent number: 6710337
    Abstract: An optical arrangement, in particular a laser scanning microscope, having a light source, in particular a laser light source, and an interruption device (1) for a light beam (2) of the light source, is configured, in the interest of reliable operation, in such a way that means (3) for monitoring the functioning of the interruption device (1) are associated with the interruption device (1). The invention additionally concerns a shutter (5) for a light beam (2) of a light source, in particular a laser light source, which, again in the interest of reliable operation of an optical arrangement, is characterized by at least two movable components (6, 7) which are configured and arranged such that the mechanical momentum generated by a moving component (6) or by several moving components is compensated for by the motion of the other component (7) or components.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: March 23, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, William C. Hay, Juergen Hoffmann
  • Patent number: 6710918
    Abstract: The invention discloses a scanning microscope (1) having a laser (2), which emits a light beam of a first wavelength (5, 43, 53) and is directed onto an optical element (9) that modifies the wavelength of the light beam at least to some extent. Means (16) for suppressing the light of the first wavelength in the modified-wavelength light beam (5, 47, 57) are provided.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: March 23, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Holger Birk, Rafael Storz, Johann Engelhardt, Kyra Moellmann
  • Publication number: 20040036872
    Abstract: An apparatus for selection and detection of at least two spectral regions of a light beam is disclosed. The light beam is spectrally spread and focused into a focus line. The apparatus has means, modifiable in their position parallel to the focus line, for blocking out a first spectral region and for reflecting at least a portion of the unblocked spectral region and a detection device that encompasses means for detecting the first spectral region and means for detecting the reflected spectral region, whereby the detection device is arranged in a plane perpendicular to the focus line.
    Type: Application
    Filed: August 20, 2003
    Publication date: February 26, 2004
    Applicant: Leica Microsystems Heidelberg GmbH
    Inventor: Johann Engelhardt
  • Patent number: 6690511
    Abstract: The present invention concerns an optical arrangement for the illumination of specimens (1) for confocal scanning microscopes, having an illuminating beam path (2) and at least one light source (4), and is intended to make possible an efficient illumination of specimens in a confocal scanning microscope while decoupling mechanical vibrations from the confocal scanning microscope, the optical arrangement being intended to be economical and low-maintenance. The optical arrangement according to the present invention is characterized in that the light of the light source (3) is coupled into a fiber (4) in which laser transitions can be induced; and that at least the laser light induced in the fiber (4) serves for specimen illumination.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: February 10, 2004
    Assignee: Leica Microsystems Heidelberg GmbH
    Inventors: Johann Engelhardt, Juergen Hoffmann
  • Patent number: 6686583
    Abstract: The present invention concerns an apparatus for coupling light (1) of at least one wavelength of a laser light source (2) into an optical assemblage (3), preferably into a confocal scanning microscope, having an optically active component (4) that serves in particular to select the wavelength and to set the power of the coupled-in light (5). To ensure that changes in the power and/or wavelength of the laser light source do not affect the power of the light (5) coupled into the optical assemblage, the apparatus according to the present invention is characterized in that in order to influence the coupled-in light (5), the component (4) serves as the adjusting element of a control system (11).
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: February 3, 2004
    Assignee: Leica Mircrosystems Heidelberg GmbH
    Inventor: Johann Engelhardt
  • Publication number: 20040012858
    Abstract: An optical component is arranged in the beam path of a scanning microscope. The optical component has a plane entrance surface through which a light beam bundle can be incoupled at an entrance angle, and a plane exit surface through which the light beam bundle can be outcoupled at an exit angle, which is different from the entrance angle. The optical component contains at least two elements that exhibit at least two different refractive indices.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 22, 2004
    Applicant: Leica Microsystems Heidelberg GmbH
    Inventor: Johann Engelhardt