Patents by Inventor Johannes Georg Laven

Johannes Georg Laven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949006
    Abstract: A power semiconductor device includes: first and second trenches extending from a surface of a semiconductor body along a vertical direction and laterally confining a mesa region along a first lateral direction; source and body regions in the mesa region electrically connected to a first load terminal; and a first insulation layer having a plurality of insulation blocks, two of which laterally confine a contact hole. The first load terminal extends into the contact hole to contact the source and body regions at the mesa region surface. A first insulation block laterally overlaps with the first trench. A second insulation block laterally overlaps with the second trench. The first insulation block has a first lateral concentration profile of a first implantation material of the source region along the first lateral direction that is different from a corresponding second lateral concentration profile for the second insulation block.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 2, 2024
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze
  • Patent number: 11848354
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A lateral separation distance between immediately adjacent ones of second port sections in a second group is smaller than in a first group.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: December 19, 2023
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Philip Christoph Brandt, Johannes Georg Laven
  • Publication number: 20230307499
    Abstract: A power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Patent number: 11764296
    Abstract: A method for fabricating a semiconductor device includes: forming a trench in a first major surface of a semiconductor body having a first conductivity type; forming a gate in the trench; forming a body region of a second conductivity type in the semiconductor body; implanting a second dopant species into a first region of the body region and a first dopant species into a second region of the body region, the first dopant species providing the first conductivity type, the second dopant species being different from the first dopant species and reducing the diffusion of the first dopant species in the semiconductor body; and thermally annealing the semiconductor body to form a source region that includes the first and second dopant species, and to produce a pn-junction between the source and body regions at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: September 19, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 11721689
    Abstract: A semiconductor device includes: a semiconductor region having charge carriers of a first conductivity type; a transistor cell in the semiconductor region; a semiconductor channel region in the transistor cell and having a first doping concentration of charge carriers of a second conductivity type, wherein a transition between the semiconductor channel region and the semiconductor region forms a first pn-junction; a semiconductor auxiliary region in the semiconductor region and having a second doping concentration of charge carriers of the second conductivity type. A transition between the semiconductor auxiliary region and semiconductor region forms a second pn-junction positioned deeper in the semiconductor region as compared to the first pn-junction.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Publication number: 20230207673
    Abstract: A power semiconductor device includes: a drift region; a plurality of IGBT cells each having a plurality of trenches extending into the drift region along a vertical direction and laterally confining at least one active mesa which includes an upper section of the drift region; and an electrically floating barrier region of an opposite conductivity type as the drift region and spatially confined, in and against the vertical direction, by the drift region. A total volume of all active mesas is divided into first and second shares, the first share not laterally overlapping with the barrier region and the second share laterally overlapping with the barrier region. The first share carries the load current at least within a range of 0% to 100% of a nominal load current. The second share carries the load current if the load current exceeds at least 0.5% of the nominal load current.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 11682700
    Abstract: An power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Patent number: 11610986
    Abstract: A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 21, 2023
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Beninger-Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 11594621
    Abstract: A method of processing a power semiconductor device includes: providing a semiconductor body with a drift region of a first conductivity type; forming a plurality of trenches extending into the semiconductor body along a vertical direction and arranged adjacent to each other along a first lateral direction; providing a mask arrangement at the semiconductor body, the mask arrangement having a lateral structure according to which some of the trenches are exposed and at least one of the trenches is covered by the mask arrangement along the first lateral direction; forming, below bottoms of the exposed trenches, a plurality of doping regions of a second conductivity type complementary to the first conductivity type; removing the mask arrangement; and extending the plurality of doping regions in parallel to the first lateral direction such that the plurality of doping regions overlap and form a barrier region of the second conductivity type adjacent to the bottoms of the exposed trenches.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 11581429
    Abstract: A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 14, 2023
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Beninger-Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 11581428
    Abstract: A power semiconductor device includes an active cell region with a drift region of a first conductivity type, a plurality of IGBT cells arranged within the active cell region, each of the IGBT cells includes at least one trench that extends into the drift, an edge termination region surrounding the active cell region, a transition region arranged between the active cell region and the edge termination region, at least some of the IGBT cells are arranged within or extend into the transition region, a barrier region of a second conductivity type, the barrier region is arranged within the active cell region and in contact with at least some of the trenches of the IGBT cells and does not extend into the transition region, and a first load terminal and a second load terminal, the power semiconductor device is configured to conduct a load current along a vertical direction between.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 14, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Francisco Javier Santos Rodriguez, Antonio Vellei, Caspar Leendertz, Christian Philipp Sandow
  • Patent number: 11538906
    Abstract: A power device includes: a diode section; a semiconductor body; a drift region extending into the diode section; trenches in the diode section and extending along a vertical direction into the semiconductor body, two adjacent trenches defining a respective mesa portion in the semiconductor body; a body region in the mesa portions; in the diode section, a barrier region between the body and drift regions and having a dopant concentration at least 100 times greater than an average dopant concentration of the drift region and a dopant dose greater than that of the body region. The barrier region has a lateral structure according to which at least 50% of the body region in the diode section is coupled to the drift region at least by the barrier region, and at least 5% of the body region in the diode section is coupled to the drift region without the barrier region.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 27, 2022
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Alexander Philippou, Christian Philipp Sandow
  • Publication number: 20220367443
    Abstract: A semiconductor device includes: a semiconductor region having charge carriers of a first conductivity type; a transistor cell in the semiconductor region; a semiconductor channel region in the transistor cell and having a first doping concentration of charge carriers of a second conductivity type, wherein a transition between the semiconductor channel region and the semiconductor region forms a first pn-junction; a semiconductor auxiliary region in the semiconductor region and having a second doping concentration of charge carriers of the second conductivity type. A transition between the semiconductor auxiliary region and semiconductor region forms a second pn-junction positioned deeper in the semiconductor region as compared to the first pn-junction.
    Type: Application
    Filed: August 2, 2022
    Publication date: November 17, 2022
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Patent number: 11410989
    Abstract: A semiconductor device is operable a forward current mode and a reverse current mode and comprises a semiconductor region, and a controllable charge carrier injector, and a gate. A method includes detecting, in the reverse current mode, if the present load current in the reversed direction does not exceed a threshold value, providing a gate signal such that the gate electrode causes the charge carrier injector to induce a first charge carrier density within the semiconductor region so as to conduct a nominal load current in the reverse direction; if the present load current in the reverse direction does exceed the threshold value, operating the semiconductor device in an overload state by providing the gate signal with a voltage that causes the semiconductor region to conduct an overload current in the reverse direction, wherein the second charge carrier density is higher than the first charge carrier density.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: August 9, 2022
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Patent number: 11398472
    Abstract: An RC IGBT with an n-barrier region in a transition section between a diode section and an IGBT section is presented.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: July 26, 2022
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Frank Dieter Pfirsch, Alexander Philippou, Christian Philipp Sandow
  • Patent number: 11394194
    Abstract: A power inverter includes a bridge circuit including a first half-bridge and a second half-bridge, each half-bridge including a high-side device and a low-side device, and a gate driver circuit connected with each gate of the high-side device and low-side power device of the first and second half-bridges and operable to provide each gate with a respective voltage to control operation of the respective power device. The gate driver is operable to provide a first voltage which is higher than a first threshold voltage of the respective power device, and a second voltage which is higher than a surge threshold of the respective power device. The surge threshold is higher than the first threshold and defines the onset of a surge current operation area of the respective power device at which the power device becomes conducts a surge current that is larger than the rated current of the device.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 19, 2022
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Thomas Basler, Hans-Joachim Schulze
  • Patent number: 11342187
    Abstract: Forming a semiconductor arrangement includes providing a first semiconductor layer having a first surface, forming a first plurality of trenches in the first surface of the first semiconductor layer, each of the trenches in the first plurality having first and second sidewalls that extend from the first surface to a bottom of the respective trench, implanting first type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, implanting second type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, and annealing the semiconductor arrangement to simultaneously activate the first type dopant atoms and the second type dopant atoms.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 24, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20220029013
    Abstract: A method for fabricating a semiconductor device includes: forming a trench in a first major surface of a semiconductor body having a first conductivity type; forming a gate in the trench; forming a body region of a second conductivity type in the semiconductor body; implanting a second dopant species into a first region of the body region and a first dopant species into a second region of the body region, the first dopant species providing the first conductivity type, the second dopant species being different from the first dopant species and reducing the diffusion of the first dopant species in the semiconductor body; and thermally annealing the semiconductor body to form a source region that includes the first and second dopant species, and to produce a pn-junction between the source and body regions at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20210376069
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A lateral separation distance between immediately adjacent ones of second port sections in a second group is smaller than in a first group.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Inventors: Roman Baburske, Philip Christoph Brandt, Johannes Georg Laven
  • Patent number: 11171230
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device includes: a semiconductor body of a first conductivity type having opposing first and second major surfaces; a gate arranged in a trench extending into the semiconductor body from the first major surface; a body region of a second conductivity type; a source region of the first conductivity type arranged on the body region and having first and second dopant species. The source region forms a pn-junction with the body junction, the pn-junction being arranged at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm. A drain region of the first conductivity type is arranged in the semiconductor body under the trench.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: November 9, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder