Patents by Inventor Johannes Georg Laven

Johannes Georg Laven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825906
    Abstract: A semiconductor device includes transistor cells and enhancement cells. Each transistor cell includes a body zone that forms a first pn junction with a drift structure. The transistor cells may form, in the body zones, inversion channels when a first control signal exceeds a first threshold. The inversion channels form part of a connection between the drift structure and a first load electrode. A delay unit generates a second control signal which trailing edge is delayed with respect to a trailing edge of the first control signal. The enhancement cells form inversion layers in the drift structure when the second control signal falls below a second threshold lower than the first threshold. The inversion layers are effective as minority charge carrier emitters.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: November 3, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Matteo Dainese, Christian Jaeger
  • Patent number: 10734507
    Abstract: A semiconductor device includes a first IGBT cell having a second-type doped drift zone and a desaturation semiconductor structure for desaturating a charge carrier concentration in the first IGBT cell. The desaturation semiconductor structure includes a first-type doped region forming a pn-junction with the drift zone and two trenches arranged in the first-type doped region and arranged beside the first IGBT cell in a lateral direction. The two trenches confine a mesa region including a first-type doped desaturation channel region and a first-type doped body region at least in the lateral direction. The desaturation channel region and the body region adjoin each other, and the desaturation channel region is a depletable region. Related methods of manufacture are also described.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Hans-Joachim Schulze
  • Publication number: 20200243509
    Abstract: A semiconductor device is operable a forward current mode and a reverse current mode and comprises a semiconductor region, and a controllable charge carrier injector, and a gate. A method includes detecting, in the reverse current mode, if the present load current in the reversed direction does not exceed a threshold value, providing a gate signal such that the gate electrode causes the charge carrier injector to induce a first charge carrier density within the semiconductor region so as to conduct a nominal load current in the reverse direction; if the present load current in the reverse direction does exceed the threshold value, operating the semiconductor device in an overload state by providing the gate signal with a voltage that causes the semiconductor region to conduct an overload current in the reverse direction, wherein the second charge carrier density is higher than the first charge carrier density.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 30, 2020
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Publication number: 20200243340
    Abstract: Forming a semiconductor arrangement includes providing a first semiconductor layer having a first surface, forming a first plurality of trenches in the first surface of the first semiconductor layer, each of the trenches in the first plurality having first and second sidewalls that extend from the first surface to a bottom of the respective trench, implanting first type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, implanting second type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, and annealing the semiconductor arrangement to simultaneously activate the first type dopant atoms and the second type dopant atoms.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20200235232
    Abstract: A power semiconductor device includes: a drift region; a plurality of IGBT cells each having a plurality of trenches extending into the drift region along a vertical direction and laterally confining at least one active mesa which includes an upper section of the drift region; and an electrically floating barrier region of an opposite conductivity type as the drift region and spatially confined, in and against the vertical direction, by the drift region. A total volume of all active mesas is divided into first and second shares, the first share not laterally overlapping with the barrier region and the second share laterally overlapping with the barrier region. The first share carries the load current at least within a range of 0% to 100% of a nominal load current. The second share carries the load current if the load current exceeds at least 0.5% of the nominal load current.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 23, 2020
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Publication number: 20200227518
    Abstract: A semiconductor device includes a plurality of first and second stripe-shaped cell trench structures formed in a semiconductor substrate and extending lengthwise in parallel with one another. Each stripe-shaped cell trench structure includes a buried electrode and an insulator layer between the buried electrode and the semiconductor substrate. A recess is formed in the insulator layer along a sidewall of one or more of the first stripe-shaped cell trench structures and vertically extends to a corresponding heavily doped contact zone. An electrically conductive material disposed in each recess contacts the corresponding buried electrode, a corresponding source zone and a corresponding heavily doped contact zone at the sidewall. Two or more of the first stripe-shaped cell trench structures are interposed between neighboring ones of the second stripe-shaped cell trench structures. Source zones alternate with portions of body zones in a lateral direction parallel to the stripe-shaped cell trench structures.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Johannes Georg Laven, Maria Cotorogea, Hans-Joachim Schulze, Haybat Itani, Erich Griebl, Andreas Haghofer
  • Publication number: 20200185906
    Abstract: A power inverter includes a bridge circuit including a first half-bridge and a second half-bridge, each half-bridge including a high-side device and a low-side device, and a gate driver circuit connected with each gate of the high-side device and low-side power device of the first and second half-bridges and operable to provide each gate with a respective voltage to control operation of the respective power device. The gate driver is operable to provide a first voltage which is higher than a first threshold voltage of the respective power device, and a second voltage which is higher than a surge threshold of the respective power device. The surge threshold is higher than the first threshold and defines the onset of a surge current operation area of the respective power device at which the power device becomes conducts a surge current that is larger than the rated current of the device.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: Johannes Georg Laven, Thomas Basler, Hans-Joachim Schulze
  • Patent number: 10679855
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 9, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Patent number: 10679857
    Abstract: A semiconductor device and method is disclosed. In one example, the method for forming a semiconductor device includes forming a trench extending from a front side surface of a semiconductor substrate into the semiconductor substrate. The method includes forming of material to be structured inside the trench. Material to be structured is irradiated with a tilted reactive ion beam at a non-orthogonal angle with respect to the front side surface such that an undesired portion of the material to be structured is removed due to the irradiation with the tilted reactive ion beam while an irradiation of another portion of the material to be structured is masked by an edge of the trench.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: June 9, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 10670474
    Abstract: Temperature sensor devices and corresponding methods are provided. A temperature sensor may include a first layer being essentially non-conductive in a temperature range and a second layer having a varying resistance in the temperature range.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventors: Christian Kegler, Johannes Georg Laven, Hans-Joachim Schulze, Guenther Ruhl, Joachim Mahler
  • Patent number: 10651165
    Abstract: A semiconductor device includes a semiconductor region having charge carriers of a first conductivity type, a transistor cell in the semiconductor region, and a semiconductor channel region in the transistor cell and having a first doping concentration of charge carriers of a second conductivity type. A semiconductor auxiliary region in the semiconductor region has a second doping concentration of charge carriers of the second conductivity type, which is at least 30% higher than the first doping concentration. A pn-junction between the semiconductor auxiliary region and the semiconductor region is positioned as deep or deeper in the semiconductor region as a pn-junction between the semiconductor channel region and the semiconductor region. The semiconductor auxiliary region is positioned closer to the semiconductor channel region than any other semiconductor region having charge carriers of the second conductivity type and that forms a further pn-junction with the semiconductor region.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 12, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Patent number: 10644496
    Abstract: A power device includes an active area having at least two switchable regions with different threshold voltages.
    Type: Grant
    Filed: December 19, 2015
    Date of Patent: May 5, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Thomas Basler, Hans-Joachim Schulze
  • Patent number: 10629676
    Abstract: First and second cell trench structures extend from a first surface into a semiconductor substrate. The first cell trench structure includes a first buried electrode and a first insulator layer between the first buried electrode and a semiconductor mesa separating the first and second cell trench structures. A capping layer covers the first surface. The capping layer is patterned to form an opening having a minimum width larger than a thickness of the first insulator layer. The opening exposes a first vertical section of the first insulator layer at the first surface. An exposed portion of the first insulator layer is removed to form a recess between the semiconductor mesa and the first buried electrode. A contact structure is in the opening and the recess. The contact structure electrically connects both a buried zone in the semiconductor mesa and the first buried electrode and allows for narrower semiconductor mesa width.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Maria Cotorogea, Hans-Joachim Schulze, Haybat Itani, Erich Griebl, Andreas Haghofer
  • Patent number: 10622268
    Abstract: An apparatus and a method for implanting ions are disclosed. In an embodiment, the apparatus includes a receptacle configured to support the wafer, a source of dopants configured to selectively provide dopants to an implantation region of the wafer and a source of radiation configured to selectively irradiate the implantation region.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 14, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Moriz Jelinek, Werner Schustereder, Hans-Joachim Schulze
  • Patent number: 10615039
    Abstract: A semiconductor device includes a device doping region of an electrical device arrangement disposed in a semiconductor substrate. A portion of the device doping region has a vertical dimension of more than 500 nm and a doping concentration of greater than 1*1015 dopant atoms per cm3. The doping concentration of the portion of the device doping region varies by less than 20% from a maximum doping concentration in the device doping region.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: April 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 10615272
    Abstract: A method of processing a semiconductor device includes: providing a semiconductor body with a drift region; forming trenches extending into the semiconductor body along a vertical direction and arranged adjacent to each other along a first lateral direction; providing a mask arrangement having a lateral structure so that some of the trenches are exposed and at least one of the trenches is covered by the mask arrangement along the first lateral direction; subjecting the semiconductor body and the mask arrangement to a dopant material providing step to form a plurality of doping regions of a second conductivity type below bottoms of the exposed trenches; removing the mask arrangement; subjecting the semiconductor body to a temperature annealing step so that the doping regions extend in parallel to the first lateral direction and overlap to form a barrier region of the second conductivity type adjacent to the bottoms of the exposed trenches.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Antonio Vellei, Markus Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 10608104
    Abstract: A transistor device includes a semiconductor mesa region between first and second trenches in a semiconductor body, a body region of a first conductivity type and a source region of a second conductivity type in the semiconductor mesa region, a drift region of the second conductivity type in the semiconductor body, and a gate electrode adjacent the body region in the first trench, and dielectrically insulated from the body region by a gate dielectric. The body region separates the source region from the drift region and extends to the surface of the semiconductor mesa region adjacent the source region. The body region comprises a surface region which adjoins the surface of the semiconductor mesa region and the first trench. The surface region has a higher doping concentration than a section of the body region that separates the source region from the drift region.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: March 31, 2020
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Johannes Georg Laven, Christian Jaeger, Frank Wolter, Frank Pfirsch, Antonio Vellei
  • Publication number: 20200083216
    Abstract: A semiconductor device includes a semiconductor substrate having a body layer arranged between a front side and a drift layer, and forming a pn-junction with the drift layer. A front metallization is on the front side in Ohmic connection with the body layer, and a back metallization opposite is in Ohmic connection with the drift layer. An IGBT cell region of the device includes a plurality of gate electrodes in Ohmic connection with a gate metallization. Each gate electrode is electrically insulated from the semiconductor substrate by a respective gate dielectric extending through the body layer. A free-wheeling diode region of the device includes a plurality of field electrodes in Ohmic connection with the front metallization. Each field electrode is separated from the semiconductor substrate by a respective field dielectric extending through the body layer. Additional semiconductor device embodiments are described.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventor: Johannes Georg Laven
  • Patent number: 10580653
    Abstract: A method of forming a semiconductor device includes irradiating a semiconductor body with particles. Dopant ions are implanted into the semiconductor body such that the dopant ions are configured to be activated as donors or acceptors. Thereafter, the semiconductor body is processed thermally.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies AG
    Inventors: Franz-Josef Niedernostheide, Johannes Georg Laven, Hans-Joachim Schulze
  • Publication number: 20200066579
    Abstract: A method includes: forming trenches extending from a surface along a vertical direction into a semiconductor body, facing trench sidewalls of two adjacent trenches laterally confining a mesa region of the semiconductor body along a first lateral direction; forming a body region in the mesa region, a surface of the body region in the mesa region at least partially forming the semiconductor body surface; forming a first insulation layer on the semiconductor body surface; subjecting the semiconductor body region to a tilted source implantation using at least one contact hole in the first insulation layer at least partially as a mask for forming a semiconductor source region in the mesa region. The tilted source implantation is tilted from the vertical direction by an angle of at least 10°. The semiconductor source region extends for no more than 80% of a width of the mesa region along the first lateral direction.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 27, 2020
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze