Patents by Inventor John A. Higginson

John A. Higginson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8551692
    Abstract: Techniques are provided for making a funnel-shaped nozzle in a semiconductor substrate. The funnel-shaped recess includes a straight-walled bottom portion and a curved top portion having a curved sidewall gradually converging toward and smoothly joined to the straight-walled bottom portion, and the curved top portion encloses a volume that is substantially greater than a volume enclosed by the straight-walled bottom portion.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 8, 2013
    Assignee: FUJILFILM Corporation
    Inventors: Gregory De Brabander, Mark Nepomnishy, John A. Higginson
  • Patent number: 8552436
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 8, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8523485
    Abstract: A flotation structure for a buoyant flood protection barrier includes a flotation body (1) adapted to rise and fall with flood water. A flexible membrane (3) is sealed at an upper region to the flotation body and sealed at a lower region. A plurality of panels (5) are hinged by means of hinge pins about substantially parallel horizontal axes, a topmost panel being hinged to the flotation body, a lowermost panel being hinged substantially at ground level, and intervening panels being hinged to each other. A scissor arrangement (9) is pivotably mounted at an upper end to the flotation body and pivotably mounted at a lower end and provided with a pivot pin (17) at a crossing point of arms (11, 13) of the scissor arrangement, the pivot pin being secured to a member (19) provided on at least one of the hinge pins (23).
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 3, 2013
    Inventor: Simon John Higginson
  • Patent number: 8523323
    Abstract: A system and method for mounting a fluid droplet ejection module to a frame is disclosed, where the fluid ejection module includes a mounting component having a mounting surface. A connector is configured to detachably attach to the frame and is positioned between the frame and the mounting surface of the fluid ejection module. A portion of a mating surface of the connector is positioned adjacent the mounting surface of a corresponding fluid ejection module and is in direct contact with the mounting surface. One or more recesses are formed in at least one of either the mounting surface of the fluid ejection module or the mating surface of the connector. The one or more recesses have a substantially uniform thickness and are filled with an adhesive. The adhesive is cured after aligning the fluid ejection module to the frame.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: September 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Kevin Von Essen, Stephen R. Deming, John A. Higginson, Nobuo Matsumoto, Andreas Bibl
  • Patent number: 8523322
    Abstract: A fluid ejector having an inner surface, an outer surface, and an orifice that allows fluid in contact with the inner surface to be ejected. The fluid ejector has a non-wetting monolayer covering at least a portion of the outer surface of the fluid ejector and surrounding an orifice in the fluid ejector. Fabrication of the non-wetting monolayer can include removing a non-wetting monolayer from a second region of a fluid ejector while leaving the non-wetting monolayer on a first region surrounding an orifice in the fluid ejector, or protecting a second region of a fluid ejector from having a non-wetting monolayer formed thereon, wherein the second region does not include a first region surrounding the orifice in the fluid ejector.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: September 3, 2013
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Yoshimasa Okamura, Jeffrey Birkmeyer, John A. Higginson, Gregory Debrabander, Paul A. Hoisington, Andreas Bibl
  • Patent number: 8518204
    Abstract: A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 27, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Hsin-Hua Hu, Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law
  • Publication number: 20130127020
    Abstract: A micro device transfer head and head array are disclosed. In an embodiment, the micro device transfer head includes a base substrate, a mesa structure with sidewalls, an electrode formed over the mesa structure, and a dielectric layer covering the electrode. A voltage can be applied to the micro device transfer head and head array to pick up a micro device from a carrier substrate and release the micro device onto a receiving substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: May 23, 2013
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Publication number: 20130126589
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: May 23, 2013
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Publication number: 20130130440
    Abstract: A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: May 23, 2013
    Inventors: Hsin-Hua Hu, Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law
  • Publication number: 20130126081
    Abstract: A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: May 23, 2013
    Inventors: Hsin-Hua Hu, Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law
  • Publication number: 20130130416
    Abstract: A micro device transfer head and head array are disclosed. In an embodiment, the micro device transfer head includes a base substrate, a mesa structure with sidewalls, an electrode formed over the mesa structure, and a dielectric layer covering the electrode. A voltage can be applied to the micro device transfer head and head array to pick up a micro device from a carrier substrate and release the micro device onto a receiving substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: May 23, 2013
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Publication number: 20130126891
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: May 23, 2013
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8426227
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 23, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8349116
    Abstract: A method of transferring a micro device and an array of micro devices are disclosed. A carrier substrate carrying a micro device connected to a bonding layer is heated to a temperature below a liquidus temperature of the bonding layer, and a transfer head is heated to a temperature above the liquidus temperature of the bonding layer. Upon contacting the micro device with the transfer head, the heat from the transfer head transfers into the bonding layer to at least partially melt the bonding layer. A voltage applied to the transfer head creates a grip force which picks up the micro device from the carrier substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: January 8, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8333860
    Abstract: A micro device transfer head and head array are disclosed. In an embodiment, the micro device transfer head includes a base substrate, a mesa structure with sidewalls, an electrode formed over the mesa structure, and a dielectric layer covering the electrode. A voltage can be applied to the micro device transfer head and head array to pick up a micro device from a carrier substrate and release the micro device onto a receiving substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 18, 2012
    Assignee: LuxVue Technology Corporation
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8297742
    Abstract: A fluid ejection device includes a circuit layer having a fluid outlet on a lower surface, a chamber substrate having a fluid inlet on an upper surface, an electrical contact electrically connecting the chamber substrate to the lower surface of the circuit layer, and a seal forming a fluid connection between the fluid outlet of the circuit layer and the fluid inlet of the chamber substrate. The seal and the electrical contact are a eutectic material. The seal and the electrical contact may be the same material.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: October 30, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Kevin Von Essen, John A. Higginson, Andreas Bibl
  • Patent number: 8287093
    Abstract: A drop ejection device including a flow path in which fluid is pressurized to eject drops from a nozzle opening on a surface, a piezoelectric actuator for pressurizing said fluid, and one or more waste fluid control apertures on the surface proximate the nozzle opening, the one or more apertures being isolated from the flow path.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: October 16, 2012
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Paul A. Hoisington, John A. Higginson, Andreas Bibl
  • Patent number: 8272717
    Abstract: A printing device for jetting a liquid includes a flow path body having a plurality of jetting flow paths, a liquid in the plurality of jetting flow paths, a piezoelectric actuator associated with each jetting flow path, a feed substrate having a plurality of fluid inlets, and a driver configured to apply a voltage pulse to the piezoelectric actuator. The first jetting flow path is adjacent to the second jetting flow path and a fluidic travel distance from the piezoelectric actuator of the first jetting flow path to a nozzle of the second jetting flow path is greater than a speed of sound in the liquid times the break off time of a droplet of the fluid from the nozzle.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: September 25, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Paul A. Hoisington, Christoph Menzel, John A. Higginson, Andreas Bibl, Kevin Von Essen
  • Patent number: 8240796
    Abstract: A fluid ejector includes a fluid ejection assembly, a housing, and an insert. The fluid ejection assembly includes one or more silicon bodies and a plurality of actuators. The one or more silicon bodies includes a silicon body having a plurality of fluid passages for fluid flow and a plurality of nozzles fluidically connected to the plurality of fluid passages. The plurality of actuators cause fluid in the plurality of fluid passages to be ejected from the plurality of nozzles. The housing assembly includes one or more plastic bodies, at least one plastic body attached to at least one silicon body to form a sealed volume on a side of the fluid ejection assembly opposite the nozzles. The insert is embedded in the at least one plastic body in proximity to the at least one silicon body, the insert having a coefficient of thermal expansion of less than 9 ppm/° C.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: August 14, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Kevin Von Essen, Andreas Bibl, John A. Higginson, Steve Deming, Mats G. Ottosson
  • Patent number: 8231202
    Abstract: In general, in a first aspect, the invention features assemblies for mounting a printhead module in an apparatus for depositing droplets on a substrate. The assemblies include a frame having an opening extending through the frame and configured to expose a surface of the printhead module mounted in the assembly, and a spring element adapted to spring load the printhead module against an edge of the opening when the printhead module is mounted in the assembly.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: July 31, 2012
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Andreas Bibl, John A. Higginson, Alan Menard, Sandra Graveson