Patents by Inventor John A. Nix

John A. Nix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12388631
    Abstract: A server and a device can conduct a secure session with (i) multiple post-quantum cryptography (PQC) key encapsulation mechanisms (KEM) and (ii) forward secrecy. The device can store a server static public key (PK.server) before establishing a secure session with the server. The device can use PK.server to encrypt a device ephemeral public key (ePK.device) into a first ciphertext. The first ciphertext can also include a device digital signature. The server can receive and decrypt the first ciphertext. The server can use the ePK.device to encrypt a server ephemeral public key (ePK.server) into a second ciphertext. The second ciphertext can also include a server digital signature. The device can receive and decrypt the second ciphertext. The device can encrypt application data into a third ciphertext using both PK.server and ePK.server. PK.server can support a first PQC algorithm and ePK.server can support a different, second PQC algorithm.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 12, 2025
    Inventor: John A. Nix
  • Patent number: 12355872
    Abstract: A set of servers can support secure and efficient “Machine to Machine” communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
    Type: Grant
    Filed: February 6, 2024
    Date of Patent: July 8, 2025
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 12342166
    Abstract: A device, mobile operator, network, and a device provider can exchange messages for EAP-TLS authentication. The network can include an authentication server function (AUSF). A device and a device provider can record both a device certificate and a device provider certificate. The network can receive an encrypted identity for the device and forward the identity to the device provider. The device provider can send the device certificate and the device provider certificate to the network. The network can (i) receive a “client hello”, (ii) select a network public key and private key, and (iii) send a certificate signing request to the device provider with the network public key, and (iv) receive a network certificate verified by the device provider certificate. The network can receive the device certificate from the device in a TLS handshake and mutually authenticate with the device using the received network certificate and the device certificate.
    Type: Grant
    Filed: June 24, 2024
    Date of Patent: June 24, 2025
    Inventor: John A. Nix
  • Publication number: 20250202684
    Abstract: A server can receive a device public key and forward the device public key to a key server. The key server can perform a first elliptic curve Diffie-Hellman (ECDH) key exchange using the device public key and a network private key to derive a secret X1. The key server can send the secret X1 to the server. The server can derive an ECC PKI key pair and send to the device the server public key. The server can conduct a second ECDH key exchange using the derived server secret key and the device public key to derive a secret X2. The server can perform an ECC point addition using the secret X1 and secret X2 to derive a secret X3. The device can derive the secret X3 using (i) the server public key, a network public key, and the device private key and (ii) a third ECDH key exchange.
    Type: Application
    Filed: March 3, 2025
    Publication date: June 19, 2025
    Inventor: John A. Nix
  • Patent number: 12301709
    Abstract: A server and a device can conduct mutually authenticated post-quantum cryptography (PQC) key encapsulation mechanisms (KEM) that also support forward secrecy. The device can store a trusted server public key (PK.server) and the server can store a trusted device public key (PK. device). The device can generate (i) a first KEM ciphertext and (ii) a first key with PK.server and encrypt an ephemeral public key (ePK. device) using the first key. The server can generate (i) a second KEM ciphertext and (ii) a second key with ePK. device. The server can generate (i) a third KEM ciphertext and (ii) a third key with PK.device. The server can encrypt an ephemeral public key (ePK. server) using the first, second, and third keys. The device can generate (i) a fourth KEM ciphertext and (ii) a fourth key with ePK. server. The device can encrypt application data using at least the first, second, third, and fourth keys.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: May 13, 2025
    Inventor: John A. Nix
  • Publication number: 20250141853
    Abstract: A server and a device can support secure sessions with both (i) post-quantum cryptography (PQC) key encapsulation mechanisms (KEM) and (ii) session resumption. In an initial secure session, the device and server can mutually generate a first shared secret key K1 from a first KEM based on a device PKI key pair. The device and server can mutually generate a second shared secret key K2 from a second KEM based on a server PKI key pair. The device and server can mutually generate a symmetric ciphering key S2 from both K1 and K2. The server can encrypt an identity for a “pre-shared” secret key (PSK-ID) with S2. The device and server can (i) mutually generate a PSK from both K1 and K2 and (ii) close the initial secure session. The device can transmit a message to resume the session, where the message includes the PSK-ID and a MAC value.
    Type: Application
    Filed: January 6, 2025
    Publication date: May 1, 2025
    Inventor: John A. Nix
  • Publication number: 20250106010
    Abstract: Elliptic Curve Cryptography (ECC) can provide security against quantum computers that could feasibly determine private keys from public keys. A server communicating with a device can store and use PKI keys comprising server private key ss, device public key Sd, and device ephemeral public key Ed. The device can store and use the corresponding PKI keys, such as server public key Ss. The key use can support all of (i) mutual authentication, (ii) forward secrecy, and (iii) shared secret key exchange. The server and the device can conduct an ECDHE key exchange with the PKI keys to mutually derive a symmetric ciphering key K1. The device can encrypt a device public key PK.Device with K1 and send to the server as a first ciphertext. The server can encrypt a server public key PK.Network with at least K1 and send to the device as a second ciphertext.
    Type: Application
    Filed: October 2, 2024
    Publication date: March 27, 2025
    Applicant: IoT and M2M Technologies, LLC
    Inventor: John A Nix
  • Publication number: 20250106013
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventor: John A. Nix
  • Patent number: 12244696
    Abstract: A server can receive a device public key and forward the device public key to a key server. The key server can perform a first elliptic curve Diffie-Hellman (ECDH) key exchange using the device public key and a network private key to derive a secret X1. The key server can send the secret X1 to the server. The server can derive an ECC PKI key pair and send to the device the server public key. The server can conduct a second ECDH key exchange using the derived server secret key and the device public key to derive a secret X2. The server can perform an ECC point addition using the secret X1 and secret X2 to derive a secret X3. The device can derive the secret X3 using (i) the server public key, a network public key, and the device private key and (ii) a third ECDH key exchange.
    Type: Grant
    Filed: March 12, 2024
    Date of Patent: March 4, 2025
    Assignee: IoT and M2M Technologies, LLC
    Inventor: John A Nix
  • Publication number: 20250030540
    Abstract: A quantum safe blockchain system can operate with quantum safe blockchain nodes (QSBN) and validators. A QSBN can generate a pending register certificate transaction comprising a public key, a fingerprint for a certificate, a URL for the certificate, a first registration number for a parent certificate of the certificate, and a digital signature. The QSBN can transmit the pending register certificate transaction to the quantum safe blockchain system. A validator can receive the pending transaction, validate the digital signature using the public key and include a confirmed register certificate transaction in a block. The confirmed transaction can include a second registration number for the certificate. The QSBN can receive the confirmed transaction and store in a database the fingerprint, the first registration number, and the second registration number. The QSBN can generate a pending certificate revocation transaction for the certificate, and transmit the pending transaction to the blockchain system.
    Type: Application
    Filed: January 9, 2024
    Publication date: January 23, 2025
    Inventor: John A. NIX
  • Patent number: 12207094
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a profile for the eUICC. The profile can include a first and second shared secret key K for authenticating with a wireless network. The first shared secret key K can be encrypted with a first key, and the second shared secret key K can be encrypted with a second key. The module can (i) receive the first key, (ii) decrypt the first shared secret key K with the first key, and (iii) subsequently authenticate with the wireless network using the plaintext first shared secret key K. The wireless network can authenticate the user of the module using a second factor. The module can then (i) receive the second key, (ii) decrypt the second shared secret key K, and (iii) authenticate with the wireless network using the second shared secret key K. The module can comprise a mobile phone.
    Type: Grant
    Filed: January 18, 2024
    Date of Patent: January 21, 2025
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Publication number: 20250016007
    Abstract: A device can (i) store public keys Ss and Sn for a network and (ii) record private key sd. A network can record a corresponding private keys ss and sn. The device can (i) generate a device ephemeral PKI key pair (Ed, ed) and (ii) send public key Ed to the network. The device can receive an ephemeral public key Es from the network. The device can calculate values for A: an elliptic curve point addition over Ss, Sn, and Es, and B: (sd+ed) mod n. The device can input values for X and Y into an elliptic curve Diffie Hellman key exchange (ECDH) in order to determine a mutually derived shared secret X5, where the network can also derive shared secret X5. The device can (i) use X5 to derive a key K2 and (ii) decrypt a ciphertext from the network using key K2.
    Type: Application
    Filed: September 23, 2024
    Publication date: January 9, 2025
    Applicant: IoT and M2M Technologies, LLC
    Inventor: John A. Nix
  • Patent number: 12192184
    Abstract: A server and a device can support secure sessions with both (i) post-quantum cryptography (PQC) key encapsulation mechanisms (KEM) and (ii) session resumption. In an initial secure session, the device and server can mutually generate a first shared secret key K1 from a first KEM based on a device PKI key pair. The device and server can mutually generate a second shared secret key K2 from a second KEM based on a server PKI key pair. The device and server can mutually generate a symmetric ciphering key S2 from both K1 and K2. The server can encrypt an identity for a “pre-shared” secret key (PSK-ID) with S2. The device and server can (i) mutually generate a PSK from both K1 and K2 and (ii) close the initial secure session. The device can transmit a message to resume the session, where the message includes the PSK-ID and a MAC value.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 7, 2025
    Inventor: John A. Nix
  • Patent number: 12166869
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: December 10, 2024
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 12143478
    Abstract: Elliptic Curve Cryptography (ECC) can provide security against quantum computers that could feasibly determine private keys from public keys. A server communicating with a device can store and use PKI keys comprising server private key ss, device public key Sd, and device ephemeral public key Ed. The device can store and use the corresponding PKI keys, such as server public key Ss. The key use can support all of (i) mutual authentication, (ii) forward secrecy, and (iii) shared secret key exchange. The server and the device can conduct an ECDHE key exchange with the PKI keys to mutually derive a symmetric ciphering key K1. The device can encrypt a device public key PK.Device with K1 and send to the server as a first ciphertext. The server can encrypt a server public key PK.Network with at least K1 and send to the device as a second ciphertext.
    Type: Grant
    Filed: October 1, 2023
    Date of Patent: November 12, 2024
    Assignee: IoT and M2M Technologies, LLC
    Inventor: John A Nix
  • Patent number: 12137173
    Abstract: A device can (i) store public keys Ss and Sn for a network and (ii) record private key sd. A network can record a corresponding private keys ss and sn. The device can (i) generate a device ephemeral PKI key pair (Ed, ed) and (ii) send public key Ed to the network. The device can receive an ephemeral public key Es from the network. The device can calculate values for A: an elliptic curve point addition over Ss, Sn, and Es, and B: (sd+ed)mod n. The device can input values for X and Y into an elliptic curve Diffie Hellman key exchange (ECDH) in order to determine a mutually derived shared secret X5, where the network can also derive shared secret X5. The device can (i) use X5 to derive a key K2 and (ii) decrypt a ciphertext from the network using key K2.
    Type: Grant
    Filed: December 12, 2023
    Date of Patent: November 5, 2024
    Assignee: IoT and M2M Technologies, LLC
    Inventor: John A Nix
  • Publication number: 20240349053
    Abstract: A device, mobile operator, network, and a device provider can exchange messages for EAP-TLS authentication. The network can include an authentication server function (AUSF). A device and a device provider can record both a device certificate and a device provider certificate. The network can receive an encrypted identity for the device and forward the identity to the device provider. The device provider can send the device certificate and the device provider certificate to the network. The network can (i) receive a “client hello”, (ii) select a network public key and private key, and (iii) send a certificate signing request to the device provider with the network public key, and (iv) receive a network certificate verified by the device provider certificate. The network can receive the device certificate from the device in a TLS handshake and mutually authenticate with the device using the received network certificate and the device certificate.
    Type: Application
    Filed: June 24, 2024
    Publication date: October 17, 2024
    Inventor: John A. Nix
  • Publication number: 20240323005
    Abstract: Methods and systems are provided for supporting efficient and secure “Machine-to-Machine” (M2M) communications using a module, a server, and an application. A module can communicate with the server by accessing the Internet, and the module can include a sensor and/or an actuator. The module, server, and application can utilize public key infrastructure (PKI) such as public keys and private keys. The module can internally derive pairs of private/public keys using cryptographic algorithms and a first set of parameters. A server can authenticate the submission of derived public keys and an associated module identity. The server can use a first server private key and a second set of parameters to (i) send module data to the application and (ii) receive module instructions from the application. The server can use a second server private key and the first set of parameters to communicate with the module.
    Type: Application
    Filed: February 9, 2024
    Publication date: September 26, 2024
    Inventor: John A. Nix
  • Publication number: 20240323006
    Abstract: A network and a device can support a secure session with both (i) multiple post-quantum cryptography (PQC) key encapsulation mechanisms (KEM) and (ii) forward secrecy. The network can operate (i) a first server for conducting KEM with the device and (ii) a second server for generating a digital signature which can be verified by the device with a server certificate. The first server can receive a device ephemeral public key (ePK.device) and generate (i) a server ephemeral public key (ePK.server) and private key. The first server can send, to the second server, data comprising ciphertext for the ePK.device, ePK.server and the server certificate. The second server can (i) generate the digital signature over the data, and (ii) send the digital signature to the first server. The first server can conduct a KEM with ePK.device and the ciphertext in order to encrypt at least ePK.server and the digital signature.
    Type: Application
    Filed: June 3, 2024
    Publication date: September 26, 2024
    Inventor: John A. Nix
  • Patent number: 12088706
    Abstract: A network and a device can support secure sessions with both (i) a post-quantum cryptography (PQC) key encapsulation mechanism (KEM) and (ii) forward secrecy. The device can generate (i) an ephemeral public key (ePK.device) and private key (eSK.device) and (ii) send ePK.device with first KEM parameters to the network. The network can (i) conduct a first KEM with ePK.device to derive a first asymmetric ciphertext and first shared secret, and (ii) generate a first symmetric ciphertext for PK.server and second KEM parameters using the first shared secret. The network can send the first asymmetric ciphertext and the first symmetric ciphertext to the device. The network can receive (i) a second symmetric ciphertext comprising “double encrypted” second asymmetric ciphertext for a second KEM with SK.server, and (ii) a third symmetric ciphertext. The network can decrypt the third symmetric ciphertext using the second asymmetric ciphertext.
    Type: Grant
    Filed: August 4, 2023
    Date of Patent: September 10, 2024
    Inventor: John A. Nix