Patents by Inventor John A. Nix

John A. Nix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190170084
    Abstract: The present application provides a piston assembly. The piston assembly may include a cylinder bore extending from a thrust side to an antithrust side and a piston positioned within the cylinder bore. The piston may include a top land, a second land, and a skirt with an axis extending therethrough. The piston may include a tight land profile with an offset about the axis of the skirt.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 6, 2019
    Inventors: Richard John Donahue, Lorne Eugene Nix, Kenneth Edward Neuman
  • Publication number: 20190173673
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 6, 2019
    Inventor: John A. Nix
  • Publication number: 20190173867
    Abstract: A network with a set of servers can support authentication from a module, where the module includes an embedded universal integrated circuit card (eUICC). The network can send a first network module identity, a first key K, and an encrypted second key K for an eUICC profile to an eUICC subscription manager. The second key K can be encrypted with a symmetric key. The module can receive and activate the eUICC profile, and the network can authenticate the module using the first network module identity and the first key K. The network can (i) authenticate the user of the module using a second factor, and then (ii) send the symmetric key to the module. The module can decrypt the encrypted second key K using the symmetric key. The network can authenticate the module using the second key K. The module can comprise a mobile phone.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 6, 2019
    Inventor: John A. Nix
  • Patent number: 10296752
    Abstract: A computing device can include an embedded universal integrated circuit card (eUICC) in order to receive and decrypt an encrypted profile, where the encrypted profile includes network access credentials. The eUICC can record a first private key and a set of cryptographic parameters. The computing device can use the eUICC to authenticate with a server. The computing device can receive (i) a signal for deriving a second private key and corresponding public key, and (ii) a nonce as user input. The eUICC can use the first private key to process a digital signature for the corresponding public key and the nonce. The eUICC can use at least the second private key, the set of cryptographic parameters, and an elliptic curve Diffie Hellman key exchange in order to derive a symmetric ciphering key. The eUICC can receive the encrypted profile and decrypt with at least the derived symmetric ciphering key.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 21, 2019
    Assignee: IoT and M2M Technologies, LLC
    Inventor: John A. Nix
  • Patent number: 10250386
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: April 2, 2019
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Publication number: 20190097794
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Inventor: John A. Nix
  • Publication number: 20190097793
    Abstract: Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. A module can communicate with a server by accessing the Internet, and the module can include a sensor and/or actuator. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of parameters. A server can use a shared secret key to authenticate the submission of derived public keys with an associated module identity. For the very first submission of a public key derived the module, the shared secret key can comprise a pre-shared secret key which can be loaded into the module using a pre-shared secret key code.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventor: John A. Nix
  • Publication number: 20190087594
    Abstract: A module such as an M2M device or a mobile phone can include a removable data storage unit. The removable data storage unit can include a nonvolatile memory, a noise amplifying memory, and a cryptographic unit. The nonvolatile memory can include (i) shared memory for access by both the module and the cryptographic unit, and (ii) protected memory accessible only by the cryptographic unit. The cryptographic unit can use a noise memory interface and noise amplifying operations in order to increase and distribute bit errors recorded in the noise amplifying memory. The cryptographic unit can (i) generate a random number using the noise amplifying memory and (ii) input the random number into a set of cryptographic algorithms in order to internally derive a PKI key pair. The private key can be recorded in protected memory and the public key signed by a certificate authority.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventor: John A. Nix
  • Patent number: 10204233
    Abstract: A module such as an M2M device or a mobile phone can include a removable data storage unit. The removable data storage unit can include a nonvolatile memory, a noise amplifying memory, and a cryptographic unit. The nonvolatile memory can include (i) shared memory for access by both the module and the cryptographic unit, and (ii) protected memory accessible only by the cryptographic unit. The cryptographic unit can use a noise memory interface and noise amplifying operations in order to increase and distribute bit errors recorded in the noise amplifying memory. The cryptographic unit can (i) generate a random number using the noise amplifying memory and (ii) input the random number into a set of cryptographic algorithms in order to internally derive a PKI key pair. The private key can be recorded in protected memory and the public key signed by a certificate authority.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: February 12, 2019
    Inventor: John A. Nix
  • Patent number: 10187206
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: January 22, 2019
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 10177911
    Abstract: Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. A module can communicate with a server by accessing the Internet, and the module can include a sensor and/or actuator. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of parameters. A server can use a shared secret key to authenticate the submission of derived public keys with an associated module identity. For the very first submission of a public key derived the module, the shared secret key can comprise a pre-shared secret key which can be loaded into the module using a pre-shared secret key code.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: January 8, 2019
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 10169587
    Abstract: A network can operate a WiFi access point with credentials. An unconfigured device can (i) support a Device Provisioning Protocol (DPP), (ii) record responder bootstrap public and private keys, and (iii) be marked with a tag. The network can record initiator bootstrap public and private keys, as well as derived initiator ephemeral public and private keys. An initiator can (i) operate a DPP application, (ii) read the tag, (iii) establish a secure and mutually authenticated connection with the network, and (iv) send the network data within the tag. The network can record the responder bootstrap public key and derive an encryption key with the (i) recorded responder bootstrap public key and (ii) derived initiator ephemeral private key. The network can encrypt credentials using the derived encryption key and send the encrypted credentials to the initiator, which can forward the encrypted credentials to the device, thereby supporting a device configuration.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: January 1, 2019
    Inventor: John A. Nix
  • Publication number: 20180367522
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a profile for the eUICC. The profile can include a first and second shared secret key K for authenticating with a wireless network. The first shared secret key K can be encrypted with a first key, and the second shared secret key K can be encrypted with a second key. The module can (i) receive the first key, (ii) decrypt the first shared secret key K with the first key, and (iii) subsequently authenticate with the wireless network using the plaintext first shared secret key K. The wireless network can authenticate the user of the module using a second factor. The module can then (i) receive the second key, (ii) decrypt the second shared secret key K, and (iii) authenticate with the wireless network using the second shared secret key K. The module can comprise a mobile phone.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventor: John A. Nix
  • Publication number: 20180343117
    Abstract: Methods and systems are provided for supporting efficient and secure “Machine-to-Machine” (M2M) communications using a module, a server, and an application. A module can communicate with the server by accessing the Internet, and the module can include a sensor and/or an actuator. The module, server, and application can utilize public key infrastructure (PKI) such as public keys and private keys. The module can internally derive pairs of private/public keys using cryptographic algorithms and a first set of parameters. A server can authenticate the submission of derived public keys and an associated module identity. The server can use a first server private key and a second set of parameters to (i) send module data to the application and (ii) receive module instructions from the application. The server can use a second server private key and the first set of parameters to communicate with the module.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 29, 2018
    Inventor: John A. Nix
  • Publication number: 20180330109
    Abstract: A module such as an M2M device or a mobile phone can include a removable data storage unit. The removable data storage unit can include a nonvolatile memory, a noise amplifying memory, and a cryptographic unit. The nonvolatile memory can include (i) shared memory for access by both the module and the cryptographic unit, and (ii) protected memory accessible only by the cryptographic unit. The cryptographic unit can use a noise memory interface and noise amplifying operations in order to increase and distribute bit errors recorded in the noise amplifying memory. The cryptographic unit can (i) generate a random number using the noise amplifying memory and (ii) input the random number into a set of cryptographic algorithms in order to internally derive a PKI key pair. The private key can be recorded in protected memory and the public key signed by a certificate authority.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Inventor: John A. Nix
  • Publication number: 20180331857
    Abstract: In implementations of packet-switched telephony, a packet switched telephony service provider receives a call request from a user device. The call request includes a telephone number corresponding to a public-switched telephone network subscriber. The call request is transmitted from the packet switched telephony service provider to a gateway for forwarding to the public-switched telephone network subscriber. A call is caused to be established between the user device and the public-switched telephone network subscriber.
    Type: Application
    Filed: June 13, 2018
    Publication date: November 15, 2018
    Applicant: Skype
    Inventors: John A. Nix, Brian C. Wiles, Jeffrey S. Mumma
  • Patent number: 10084768
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a profile for the eUICC. The profile can include a first and second shared secret key K for authenticating with a wireless network. The first shared secret key K can be encrypted with a first key, and the second shared secret key K can be encrypted with a second key. The module can (i) receive the first key, (ii) decrypt the first shared secret key K with the first key, and (iii) subsequently authenticate with the wireless network using the plaintext first shared secret key K. The wireless network can authenticate the user of the module using a second factor. The module can then (i) receive the second key, (ii) decrypt the second shared secret key K, and (iii) authenticate with the wireless network using the second shared secret key K. The module can comprise a mobile phone.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 25, 2018
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Publication number: 20180270059
    Abstract: Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. A module can communicate with a server by accessing the Internet, and the module can include a sensor and/or actuator. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of parameters. A server can use a shared secret key to authenticate the submission of derived public keys with an associated module identity. For the very first submission of a public key derived the module, the shared secret key can comprise a pre-shared secret key which can be loaded into the module using a pre-shared secret key code.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventor: John A. Nix
  • Publication number: 20180262329
    Abstract: A set of servers can support secure and efficient “Machine to Machine” communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 13, 2018
    Inventor: John A. Nix
  • Publication number: 20180254897
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Inventor: John A. Nix