Patents by Inventor John A. Nix

John A. Nix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180212946
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a profile for the eUICC. The profile can include a first and second shared secret key K for authenticating with a wireless network. The first shared secret key K can be encrypted with a first key, and the second shared secret key K can be encrypted with a second key. The module can (i) receive the first key, (ii) decrypt the first shared secret key K with the first key, and (iii) subsequently authenticate with the wireless network using the plaintext first shared secret key K. The wireless network can authenticate the user of the module using a second factor. The module can then (i) receive the second key, (ii) decrypt the second shared secret key K, and (iii) authenticate with the wireless network using the second shared secret key K. The module can comprise a mobile phone.
    Type: Application
    Filed: March 22, 2018
    Publication date: July 26, 2018
    Inventor: John A. Nix
  • Patent number: 10027511
    Abstract: A system and method for providing packet-switched telephony service. The system provides call control, signaling, and/or delivery of voice, video, and other media in substantially real time. One embodiment of the system includes a call client application on a user device, and a call server located at a packet-switched telephony service provider. The call server is preferably operable to communicate with the call client in a non-native protocol and with the gateway in a native protocol.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: July 17, 2018
    Assignee: SKYPE
    Inventors: John A. Nix, Brian C. Wiles, Jeffrey S. Mumma
  • Patent number: 10003461
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: June 19, 2018
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 9998281
    Abstract: A set of servers can support secure and efficient “Machine to Machine” communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: June 12, 2018
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Patent number: 9998280
    Abstract: Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. A module can communicate with a server by accessing the Internet, and the module can include a sensor and/or actuator. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of parameters. A server can use a shared secret key to authenticate the submission of derived public keys with an associated module identity. For the very first submission of a public key derived the module, the shared secret key can comprise a pre-shared secret key which can be loaded into the module using a pre-shared secret key code.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: June 12, 2018
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Publication number: 20180144147
    Abstract: A module such as an M2M device or a mobile phone can include a removable data storage unit. The removable data storage unit can include a nonvolatile memory, a noise amplifying memory, and a cryptographic unit. The nonvolatile memory can include (i) shared memory for access by both the module and the cryptographic unit, and (ii) protected memory accessible only by the cryptographic unit. The cryptographic unit can use a noise memory interface and noise amplifying operations in order to increase and distribute bit errors recorded in the noise amplifying memory. The cryptographic unit can (i) generate a random number using the noise amplifying memory and (ii) input the random number into a set of cryptographic algorithms in order to internally derive a PKI key pair. The private key can be recorded in protected memory and the public key signed by a certificate authority.
    Type: Application
    Filed: May 18, 2016
    Publication date: May 24, 2018
    Inventor: John A. Nix
  • Patent number: 9961060
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a profile for the eUICC. The profile can include a first and second shared secret key K for authenticating with a wireless network. The first shared secret key K can be encrypted with a first key, and the second shared secret key K can be encrypted with a second key. The module can (i) receive the first key, (ii) decrypt the first shared secret key K with the first key, and (iii) subsequently authenticate with the wireless network using the plaintext first shared secret key K. The wireless network can authenticate the user of the module using a second factor. The module can then (i) receive the second key, (ii) decrypt the second shared secret key K, and (iii) authenticate with the wireless network using the second shared secret key K. The module can comprise a mobile phone.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: May 1, 2018
    Assignee: Network-1 Technologies, Inc.
    Inventor: John A. Nix
  • Publication number: 20170373845
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 28, 2017
    Applicant: M2M and loT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20170302447
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Applicant: M2M and loT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20170272276
    Abstract: A system and method for providing packet-switched telephony service. The system provides call control, signaling, and/or delivery of voice, video, and other media in substantially real time. One embodiment of the system includes a call client application on a user device, and a call server located at a packet-switched telephony service provider. The call server is preferably operable to communicate with the call client in a non-native protocol and with the gateway in a native protocol.
    Type: Application
    Filed: May 16, 2017
    Publication date: September 21, 2017
    Applicant: Skype
    Inventors: John A. Nix, Brian C. Wiles, Jeffrey S. Mumma
  • Patent number: 9742562
    Abstract: A module with an embedded universal integrated circuit card (eUICC) can include a received eUICC profile and a set of cryptographic algorithms. The received eUICC profile can include an initial shared secret key for authentication with a wireless network. The module can receive a key K network token and send a key K module token to the wireless network. The module can use the key K network token, a derived module private key, and a key derivation function to derive a secret shared network key K that supports communication with the wireless network. The wireless network can use the received key K module token, a network private key, and the key derivation function in order to derive the same secret shared network key K derived by the module. The module and the wireless network can subsequently use the mutually derived key K to communicate using traditional wireless network standards.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: August 22, 2017
    Assignee: M2M and IoT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20170237561
    Abstract: Methods and systems are provided for supporting efficient and secure “Machine-to-Machine” (M2M) communications using a module, a server, and an application. A module can communicate with the server by accessing the Internet, and the module can include a sensor and/or an actuator. The module, server, and application can utilize public key infrastructure (PKI) such as public keys and private keys. The module can internally derive pairs of private/public keys using cryptographic algorithms and a first set of parameters. A server can authenticate the submission of derived public keys and an associated module identity. The server can use a first server private key and a second set of parameters to (i) send module data to the application and (ii) receive module instructions from the application. The server can use a second server private key and the first set of parameters to communicate with the module.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Applicant: M2M and loT Technologies, LLC
    Inventor: John A. Nix
  • Patent number: 9698981
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: July 4, 2017
    Assignee: M2M and IoT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20170188231
    Abstract: A set of servers can support secure and efficient “Machine to Machine” communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventor: John A. Nix
  • Patent number: 9674001
    Abstract: A system and method for providing packet-switched telephony service. The system provides call control, signaling, and/or delivery of voice, video, and other media in substantially real time. One embodiment of the system includes a call client application on a user device, and a call server located at a packet-switched telephony service provider. The call server is preferably operable to communicate with the call client in a non-native protocol and with the gateway in a native protocol.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 6, 2017
    Assignee: Skype
    Inventors: John A. Nix, Brian C. Wiles, Jeffrey S. Mumma
  • Patent number: 9641327
    Abstract: Methods and systems are provided for supporting efficient and secure “Machine-to-Machine” (M2M) communications using a module, a server, and an application. A module can communicate with the server by accessing the Internet, and the module can include a sensor and/or an actuator. The module, server, and application can utilize public key infrastructure (PKI) such as public keys and private keys. The module can internally derive pairs of private/public keys using cryptographic algorithms and a first set of parameters. A server can authenticate the submission of derived public keys and an associated module identity. The server can use a first server private key and a second set of parameters to (i) send module data to the application and (ii) receive module instructions from the application. The server can use a second server private key and the first set of parameters to communicate with the module.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: May 2, 2017
    Assignee: M2M and IoT Technologies, LLC
    Inventor: John A. Nix
  • Patent number: 9596078
    Abstract: A set of servers can support secure and efficient “Machine to Machine” communications using an application interface and a module controller. The set of servers can record data for a plurality of modules in a shared module database. The set of servers can (i) access the Internet to communicate with a module using a module identity, (i) receive server instructions, and (iii) send module instructions. Data can be encrypted and decrypted using a set of cryptographic algorithms and a set of cryptographic parameters. The set of servers can (i) receive a module public key with a module identity, (ii) authenticate the module public key, and (iii) receive a subsequent series of module public keys derived by the module with a module identity. The application interface can use a first server private key and the module controller can use a second server private key.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: March 14, 2017
    Assignee: M2M and IoT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20160269386
    Abstract: A network with a set of servers can support authentication from a module, where the module includes an embedded universal integrated circuit card (eUICC). The network can send a first network module identity, a first key K, and an encrypted second key K for an eUICC profile to an eUICC subscription manager. The second key K can be encrypted with a symmetric key. The module can receive and activate the eUICC profile, and the network can authenticate the module using the first network module identity and the first key K. The network can (i) authenticate the user of the module using a second factor, and then (ii) send the symmetric key to the module. The module can decrypt the encrypted second key K using the symmetric key. The network can authenticate the module using the second key K. The module can comprise a mobile phone.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Applicant: M2M and loT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20160270000
    Abstract: Methods and systems are provided for power management and security for wireless modules in “Machine-to-Machine” communications. A wireless module operating in a wireless network and with access to the Internet can efficiently and securely communicate with a server. The wireless network can be a public land mobile network (PLMN) that supports wireless wide area network technology including 3rd generation (3G) and 4th generation (4G) networks, and future generations as well. The wireless module can (i) utilize sleep and active states to monitor a monitored unit with a sensor and (ii) communicate with wireless network by utilizing a radio. The wireless module can include power control steps to reduce the energy consumed after sending sensor data by minimizing a tail period of a radio resource control (RRC) connected state.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Applicant: M2M and loT Technologies, LLC
    Inventor: John A. Nix
  • Publication number: 20160269199
    Abstract: A system and method for providing packet-switched telephony service. The system provides call control, signaling, and/or delivery of voice, video, and other media in substantially real time. One embodiment of the system includes a call client application on a user device, and a call server located at a packet-switched telephony service provider. The call server is preferably operable to communicate with the call client in a non-native protocol and with the gateway in a native protocol.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Applicant: Skype
    Inventors: John A. Nix, Brian C. Wiles, Jeffrey S. Mumma