Patents by Inventor John A. Pipitone

John A. Pipitone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120028461
    Abstract: Methods for depositing metal in high aspect ratio features formed on a substrate are provided herein. In some embodiments, a method includes applying first RF power at VHF frequency to target comprising metal disposed above substrate to form plasma, applying DC power to target to direct plasma towards target, sputtering metal atoms from target using plasma while maintaining pressure in PVD chamber sufficient to ionize predominant portion of metal atoms, depositing first plurality of metal atoms on bottom surface of opening and on first surface of substrate, applying second RF power to redistribute at least some of first plurality from bottom surface to lower portion of sidewalls of the opening, and depositing second plurality of metal atoms on upper portion of sidewalls by reducing amount of ionized metal atoms in PVD chamber, wherein first and second pluralities form a first layer deposited on substantially all surfaces of opening.
    Type: Application
    Filed: July 8, 2011
    Publication date: February 2, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alan Ritchie, Karl Brown, John Pipitone
  • Patent number: 8070925
    Abstract: In a PVD reactor having a sputter target at the ceiling, a conductive housing enclosing the rotating magnet assembly has a central port for the rotating magnet axle. A conductive hollow cylinder of the housing surrounds an external portion of the spindle. RF power is coupled to a radial RF connection rod extending radially from the hollow cylinder. DC power is coupled to another radial DC connection rod extending radially from the hollow cylinder.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: December 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Ying Rui, Karl M. Brown, John Pipitone, Lara Hawrylchak
  • Patent number: 8062484
    Abstract: A method of performing physical vapor deposition of copper onto an integrated circuit in a vacuum chamber of a plasma reactor, includes providing a copper target near a ceiling of the chamber, placing an integrated circuit wafer on a wafer support pedestal facing the target, introducing a carrier gas into the vacuum chamber, and establishing a deposition rate on the wafer by applying D.C. power to the copper target while establishing a plasma ionization fraction by applying VHF power to the copper target. The method can further include promoting re-sputtering of copper on vertical surfaces on the wafer by coupling HF or LF power to the wafer. The method preferably includes maintaining a target magnetic field at the target and scanning the target magnetic field across the target.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: November 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Publication number: 20100314244
    Abstract: Methods of processing a substrate in a PVD chamber comprising a target, a substrate and a process gas at a pressure sufficient to cause ionization of a substantial portion of species sputtered from the target are described. A capacitively coupled high density plasma is maintained by applying very high frequency power to the target. Sputtered material is ionized in the plasma and accelerated toward the substrate by a high frequency bias power applied to the substrate. The microstructure of the resultant film is controlled by modifying one or more of the pressure and the high frequency bias power.
    Type: Application
    Filed: September 16, 2009
    Publication date: December 16, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Karl Brown, Alan Ritchie, John A. Pipitone, Daniel J. Hoffman, Ying Rui, Donald J.K. Olgado
  • Publication number: 20100314245
    Abstract: Methods of processing a substrate in a PVD chamber comprising a target, a substrate and a process gas at a pressure sufficient to cause ionization of a substantial portion of species sputtered from the target are described. A capacitively coupled high density plasma is maintained by applying very high frequency power to the target. Sputtered material is ionized in the plasma and accelerated toward the substrate by a high frequency bias power applied to the substrate. The microstructure of the resultant film is controlled by modifying one or more of the pressure and the high frequency bias power.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Karl Brown, Alan Ritchie, John A. Pipitone, Daniel J. Hoffman, Ying Rui, Donald J.K. Olgado
  • Patent number: 7820020
    Abstract: A method of performing physical vapor deposition of copper onto an integrated circuit in a vacuum chamber of a plasma reactor includes providing a copper target near a ceiling of the chamber, placing an integrated circuit wafer on a wafer support pedestal facing the target near a floor of the chamber, introducing a carrier gas into the vacuum chamber having an atomic weight substantially less than the atomic weight of copper, maintaining a target-sputtering plasma at the target to produce a stream comprising at least one of copper atoms and copper ions flowing from the target toward the wafer support pedestal for vapor deposition, maintaining a wafer-sputtering plasma near the wafer support pedestal by capacitively coupling plasma RF source power to the wafer-sputtering plasma, and accelerating copper ions of the wafer sputtering plasma in a direction normal to a surface of the wafer support pedestal.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta, Ralf Hofmann
  • Patent number: 7804040
    Abstract: A physical vapor deposition reactor includes a vacuum chamber with a sidewall, a ceiling and a retractable wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber, the retractable wafer support pedestal having an internal electrode and a grounded base with a conductive annular flange extending from the base. A metal sputter target at the ceiling is energized by a high voltage D.C. source. The reactor has an RF plasma source power generator with a frequency suitable for exciting kinetic electrons is coupled to either the sputter target or to the internal electrode of the pedestal.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: September 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, Semyon Sherstinksy, Vineet H. Mehta, Wei W. Wang, John A. Pipitone, Kurt J. Ahmann, Armando Valverde, Jr.
  • Patent number: 7780814
    Abstract: A plasma reactor for processing a workpiece in a reactor chamber having a wafer support pedestal within the chamber and process gas injection apparatus, an RF bias power generator coupled to the wafer support pedestal and having a bias frequency, a source power applicator, an RF source power generator having a source frequency and a coaxial cable coupled between the RF source power generator and the source power applicator includes a filter connected between the coaxial cable and the source power applicator that enhances uniformity of etch rate across the wafer and from reactor to reactor. The filter includes a set of reflection circuits coupled between the source power applicator and a ground potential and being tuned to, respectively, the bias frequency and intermodulation products of the bias frequency and the source frequency.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John A. Pipitone, Kenneth D. Smyth, Mei Po (Mabel) Yeung
  • Patent number: 7768269
    Abstract: A method of responding to voltage or current transients during processing of a wafer in a plasma reactor at each of plural RF power applicators and at the wafer support surface. For each process step and for each of the power applicators and the wafer support surface, the method includes determining an arc detection threshold lying above a noise level. The method further includes comparing each transient with the threshold determined for the corresponding power applicator or wafer support surface, and issuing an arc detect flag if the transient exceeds the threshold.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: August 3, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John Pipitone, Ryan Nunn-Gage
  • Patent number: 7750644
    Abstract: A plasma reactor system for processing a wafer in which respective comparators are coupled to the respective RF transient sensors which are coupled in turn to respective RF power application points. The comparators have respective comparison thresholds. The system further includes a controller programmed to updating the respective thresholds of the comparators with respective updated thresholds for different ones of the steps of the process recipe.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John Pipitone, Ryan Nunn-Gage
  • Patent number: 7750645
    Abstract: A method for processing a semiconductor wafer in a plasma reactor comprises sensing transient voltages or currents on a conductor coupled to the wafer and providing a first comparator for comparing the transient voltages or currents with a threshold level stored in the comparator. The method further includes transmitting from the comparator an arc flag signal whenever a transient voltage or current is sensed that exceeds the threshold level, and deactivating the power generator in response to the arc flag signal.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John Pipitone, Ryan Nunn-Gage
  • Patent number: 7737702
    Abstract: Wafer level arc detection is provided in a plasma reactor using an RF transient sensor sensing voltage at an electrostatic chucking electrode, the RF sensor being coupled to a threshold comparator, and a system controller responsive to the threshold comparator.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventor: John Pipitone
  • Patent number: 7733095
    Abstract: Wafer level arc detection is provided in a plasma reactor using an RF transient sensor coupled to a threshold comparator, and a system controller responsive to the threshold comparator.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John Pipitone, John C. Forster
  • Publication number: 20100096261
    Abstract: In a PVD reactor having a sputter target at the ceiling, a conductive housing enclosing the rotating magnet assembly has a central port for the rotating magnet axle. A conductive hollow cylinder of the housing surrounds an external portion of the spindle. RF power is coupled to a radial RF connection rod extending radially from the hollow cylinder. DC power is coupled to another radial DC connection rod extending radially from the hollow cylinder.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 22, 2010
    Applicant: Applied Materials, Inc.
    Inventors: DANIEL J. HOFFMAN, Ying Rui, Karl M. Brown, John Pipitone, Lara Hawrylchak
  • Publication number: 20100089748
    Abstract: The present invention generally includes a sputtering target assembly that may be used in an RF sputtering process. The sputtering target assembly may include a backing plate and a sputtering target. The backing plate may be shaped to have one or more fins that extend from the backing plate towards the sputtering target. The sputtering target may be bonded to the fins of the backing plate. The RF current utilized during a sputtering process will be applied to the sputtering target at the one or more fin locations. The fins may extend from the backing plate at a location that corresponds to a magnetic field produced by a magnetron that may be disposed behind the backing plate. By controlling the location where the RF current is coupled to the sputtering target to be aligned with the magnetic field, the erosion of the sputtering target may be controlled.
    Type: Application
    Filed: October 15, 2008
    Publication date: April 15, 2010
    Inventors: JOHN C.FORSTER, Daniel J. Hoffman, John A. Pipitone, Xianmin Tang, RongJun Wang
  • Publication number: 20100012480
    Abstract: The method of performing physical vapor deposition on a workpiece includes performing at least one of the following: (a) increasing ion density over a workpiece center while decreasing ion density over a workpiece edge by decreasing impedance to ground at a target source power frequency fs through a bias multi-frequency impedance controller relative to the impedance to ground at the source power frequency fs through the side wall; or (b) decreasing ion density over the workpiece center while increasing ion density over the workpiece edge by increasing the impedance to ground at fs through the bias multi-frequency impedance controller relative to the impedance to ground at fs through the side wall.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Applicant: Applied Materials, Inc.
    Inventors: John C. Forster, Daniel J. Hoffman, John A. Pipitone, Xianming Tang, Rongjun Wang
  • Publication number: 20100012029
    Abstract: In a physical vapor deposition plasma reactor, a multi-frequency impedance controller is coupled between RF ground and one of (a) the bias electrode, (b) the sputter target, the controller providing adjustable impedances at a first set of frequencies, said first set of frequencies including a first set of frequencies to be blocked and a first set of frequencies to be admitted. The first multi-frequency impedance controller includes a set of band pass filters connected in parallel and tuned to said first set of frequencies to be admitted, and a set of notch filters connected in series and tuned to said first set of frequencies to be blocked.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Applicant: Applied Materials, Inc.
    Inventors: John C. FORSTER, Daniel J. Hoffman, John A. Pipitone, Xianmin Tang, Rongjun Wang
  • Publication number: 20090229969
    Abstract: In a plasma enhanced physical vapor deposition of a material onto workpiece, a metal target faces the workpiece across a target-to-workpiece gap less than a diameter of the workpiece. A carrier gas is introduced into the chamber and gas pressure in the chamber is maintained above a threshold pressure at which mean free path is less than 5% of the gap. RF plasma source power from a VHF generator is applied to the target to generate a capacitively coupled plasma at the target, the VHF generator having a frequency exceeding 30 MHz. The plasma is extended across the gap to the workpiece by providing through the workpiece a first VHF ground return path at the frequency of the VHF generator.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Karl M. Brown, Ying Rui, John Pipitone
  • Publication number: 20090197419
    Abstract: A method of fabricating multilayer interconnect structures on a semiconductor wafer uses an interior surface of a metal lid that has been roughed to a surface roughness in excess of RA 2000 with a reentrant surface profile. The metal lid is installed as the ceiling of a plasma clean reactor chamber having a wafer pedestal facing the interior surface of the ceiling.
    Type: Application
    Filed: April 9, 2009
    Publication date: August 6, 2009
    Inventors: KARL M. BROWN, John A. Pipitone, Vineet H. Mehta
  • Publication number: 20090159439
    Abstract: Wafer level arc detection is provided in a plasma reactor using an RF transient sensor coupled to a threshold comparator, and a system controller responsive to the threshold comparator.
    Type: Application
    Filed: August 15, 2007
    Publication date: June 25, 2009
    Applicant: Applied Materials, Inc.
    Inventors: John Pipitone, John C. Forster