Patents by Inventor John Aaron Zarraga

John Aaron Zarraga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240119755
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 11, 2024
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11954285
    Abstract: One variation of a method for detecting an input at a touch sensor—including a force-sensitive layer exhibiting variations in local resistance responsive to local variations in applied force on a touch sensor surface and a set of drive and sense electrodes—includes: driving a drive electrode with a drive signal; reading a sense signal from a sense electrode; detecting a alternating-current component and a direct-current component of the sense signal; in response to a magnitude of the direct-current component of the sense signal falling below a threshold magnitude, detecting an input on the touch sensor surface during the scan cycle based on the alternating-current component of the sense signal; and, in response to the magnitude of the direct-current component of the sense signal exceeding the threshold magnitude, detecting the input on the touch sensor surface during the scan cycle based on the direct-current component of the sense signal.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: April 9, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Vijay Rajanna, Tomer Moscovich
  • Publication number: 20240036694
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Application
    Filed: September 29, 2023
    Publication date: February 1, 2024
    Inventors: IIya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11887398
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: January 30, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11880506
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: January 23, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230384861
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Application
    Filed: June 1, 2023
    Publication date: November 30, 2023
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Patent number: 11829543
    Abstract: One variation of a method includes: defining a first capacitance gradient of capacitance thresholds spanning a capacitive touch sensor; defining a first pressure gradient of pressure thresholds spanning a pressure sensor; reading a capacitance value from the capacitive touch sensor proximal a first location; detecting presence of a first input at the first location in response to the capacitance value exceeding a capacitance threshold assigned to the first location; reading a pressure value from the pressure sensor proximal the first location; detecting presence of a second input proximal the first location in response to the pressure value exceeding a pressure threshold; in response to detecting the first input and detecting the second input: merging the first input and the second input into a confirmed touch input; and generating a first touch image representing the first location and the pressure value of the confirmed touch input.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 28, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11809672
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: November 7, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230333690
    Abstract: One variation of a method for characterizing inputs includes: scanning an array of sense electrodes at a first resolution to generate a first force image; detecting a first force input in the first force image; in response to a first geometry dimension of the first force input exceeding a first threshold, characterizing the first force input as a non-stylus input type; in response to the first geometry dimension of the first force input remaining below the first threshold: scanning the array of sense electrodes at a second resolution; detecting a second force input in a second force image; and, in response to a ratio of a force magnitude of the second force input to a geometry dimension of the second force input exceeding a second threshold, characterizing the first force input as a stylus input type; and outputting a location and a type of the first force input.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Publication number: 20230325033
    Abstract: A method for calibrating a touch sensor includes: at a calibration system during a calibration routine, applying a probe, at a target selection force, to a sequence of locations on a touch sensor surface of a touch sensor; at the touch sensor, capturing a sequence of touch images representing magnitudes of forces detected on the touch sensor surface during the calibration routine; fusing the sequence of touch images into a response map representing magnitudes of forces detected on the touch sensor surface by the touch sensor responsive to application of the target selection force on the touch sensor surface by the probe during the calibration routine; generating a force compensation map defining threshold forces for detecting selections at the target selection force on the touch sensor surface based on the response map.
    Type: Application
    Filed: May 22, 2023
    Publication date: October 12, 2023
    Inventors: Tomer Moscovich, Scott Isaacson, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Samuel Palomino
  • Publication number: 20230324995
    Abstract: One variation of a system for a touch sensor includes: a substrate; a cover layer; a spacer element; a second electrode; and a controller. The substrate includes: a support location arranged on the substrate; and a first electrode arranged proximal the support location. The cover layer defines a touch sensor surface arranged over the substrate. The spacer element: is coupled to the substrate at the support location; and yields to displacement of the substrate downward responsive to forces applied to the touch sensor surface. The second electrode: is arranged opposite the first electrode to define a nominal gap; and is configured to effect electrical values of the first electrode responsive to displacement of the substrate. The controller is configured to: read a set of electrical values from the first sense electrode; and interpret a first force magnitude of a first touch input based on the set of electrical values.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Shuangming Li, Ninad Sathe, Darren Lochun
  • Publication number: 20230260314
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Application
    Filed: December 7, 2022
    Publication date: August 17, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230251740
    Abstract: One variation of a system includes: a frame; a sensor module; and a controller. The frame includes: a base structure that locates a display defining a front face of a device; and a lateral frame structure extending along and adjacent an edge of the display and supported on a side of the base structure. The base structure and the lateral frame structure cooperate to define a channel arranged behind the display and extending longitudinally between the lateral frame structure and the side of the base structure. The sensor module is arranged in the channel and includes: a substrate; and a linear array of sensors arranged on the substrate and outputting sense signals representing local deflections of the lateral frame structure. The controller detects locations and force magnitudes of side inputs on the device, proximal the edge of the display, based on sense signals output by the linear array of sensors.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, James Junus, Darren Lochun, Tomer Moscovich, Shuangming Li, Alexander Grau
  • Publication number: 20230229242
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Application
    Filed: October 5, 2021
    Publication date: July 20, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11703950
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: July 18, 2023
    Assignee: Sensel, Inc.
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Publication number: 20230221816
    Abstract: One variation of a method for detecting and characterizing force inputs on a surface includes: during a resistance scan cycle of a sampling period, driving a shield electrode arranged over a resistive touch sensor to a reference potential and reading resistance values across sense electrode and drive electrode pairs in the resistive touch sensor; during a processing cycle of the sampling period, transforming the resistance values into a position and a magnitude of a force applied to a tactile surface over the shield electrode, releasing the shield electrode from the reference potential, reading a capacitance value of the shield electrode, and detecting proximity of an object to the tactile surface based on the capacitance value; and generating a touch image representing the position and the magnitude of the force on the tactile surface based on the proximity of the object to the tactile surface.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Charles Watson
  • Publication number: 20230214055
    Abstract: One variation of a method for detecting an input at a touch sensor—including a force-sensitive layer exhibiting variations in local resistance responsive to local variations in applied force on a touch sensor surface and a set of drive and sense electrodes—includes: driving a drive electrode with a drive signal; reading a sense signal from a sense electrode; detecting a alternating-current component and a direct-current component of the sense signal; in response to a magnitude of the direct-current component of the sense signal falling below a threshold magnitude, detecting an input on the touch sensor surface during the scan cycle based on the alternating-current component of the sense signal; and, in response to the magnitude of the direct-current component of the sense signal exceeding the threshold magnitude, detecting the input on the touch sensor surface during the scan cycle based on the direct-current component of the sense signal.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Vijay Rajanna, Tomer Moscovich
  • Patent number: 11693520
    Abstract: A method for calibrating a touch sensor includes: at a calibration system during a calibration routine, applying a probe, at a target selection force, to a sequence of locations on a touch sensor surface of a touch sensor; at the touch sensor, capturing a sequence of touch images representing magnitudes of forces detected on the touch sensor surface during the calibration routine; fusing the sequence of touch images into a response map representing magnitudes of forces detected on the touch sensor surface by the touch sensor responsive to application of the target selection force on the touch sensor surface by the probe during the calibration routine; generating a force compensation map defining threshold forces for detecting selections at the target selection force on the touch sensor surface based on the response map.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: July 4, 2023
    Assignee: Sensel, Inc.
    Inventors: Tomer Daniel Moscovich, Scott Isaacson, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Samuel Palomino
  • Publication number: 20230168741
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 1, 2023
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Patent number: 11656718
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 23, 2023
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu