Patents by Inventor John Aaron Zarraga

John Aaron Zarraga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11656717
    Abstract: One variation of a system includes: a frame; a sensor module; and a controller. The frame includes: a base structure that locates a display defining a front face of a device; and a lateral frame structure extending along and adjacent an edge of the display and supported on a side of the base structure. The base structure and the lateral frame structure cooperate to define a channel arranged behind the display and extending longitudinally between the lateral frame structure and the side of the base structure. The sensor module is arranged in the channel and includes: a substrate; and a linear array of sensors arranged on the substrate and outputting sense signals representing local deflections of the lateral frame structure. The controller detects locations and force magnitudes of side inputs on the device, proximal the edge of the display, based on sense signals output by the linear array of sensors.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: May 23, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, James Junus, Darren Lochun, Tomer Moscovich, Shuangming Li, Alexander Grau
  • Patent number: 11650687
    Abstract: A tactile touch sensor (TTS) system and method allowing physical augmentation of a high-resolution touch sensor array (TSA) is disclosed. Physical augmentation is accomplished using a TSA physical overlay (TPO) placed on top of the TSA. The TPO is constructed to transmit forces to the underlying TSA. Force transmission is accomplished by either using a flexible overlay or with a rigid mechanical overlay that transmits user forces exerted on the overlay to the underlying TSA. Incorporation of TPO identifiers (TPI) within the TPO permits identification of the TPO by a TPO detector (TPD) allowing operational characteristics of the TSA to be automatically reconfigured to conform to the currently applied TPO structure by a user computing device (UCD). The UCD may be configured to automatically load an appropriate application software driver (ASD) in response to a TPI read by the TPD from the currently applied TPO.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: May 16, 2023
    Assignee: SENSEL, INC.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11635839
    Abstract: One variation of a method for detecting and characterizing force inputs on a surface includes: during a resistance scan cycle of a sampling period, driving a shield electrode arranged over a resistive touch sensor to a reference potential and reading resistance values across sense electrode and drive electrode pairs in the resistive touch sensor; during a processing cycle of the sampling period, transforming the resistance values into a position and a magnitude of a force applied to a tactile surface over the shield electrode, releasing the shield electrode from the reference potential, reading a capacitance value of the shield electrode, and detecting proximity of an object to the tactile surface based on the capacitance value; and generating a touch image representing the position and the magnitude of the force on the tactile surface based on the proximity of the object to the tactile surface.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 25, 2023
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Charles Watson
  • Patent number: 11614820
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 28, 2023
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20230079470
    Abstract: A method for calibrating a touch sensor includes: at a calibration system during a calibration routine, applying a probe, at a target selection force, to a sequence of locations on a touch sensor surface of a touch sensor; at the touch sensor, capturing a sequence of touch images representing magnitudes of forces detected on the touch sensor surface during the calibration routine; fusing the sequence of touch images into a response map representing magnitudes of forces detected on the touch sensor surface by the touch sensor responsive to application of the target selection force on the touch sensor surface by the probe during the calibration routine; generating a force compensation map defining threshold forces for detecting selections at the target selection force on the touch sensor surface based on the response map.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 16, 2023
    Inventors: Tomer Daniel Moscovich, Scott Isaacson, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Samuel Palomino
  • Publication number: 20230077484
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 16, 2023
    Inventors: IIya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230075139
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11592903
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: February 28, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Publication number: 20230012830
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 19, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20220404938
    Abstract: One variation of a method for interfacing a computer to a human includes: detecting application of a first input onto a touch sensor surface and a first force magnitude of the first input; in response to the first force magnitude exceeding a first threshold magnitude, actuating a vibrator coupled to the touch sensor surface during a first click cycle and triggering an audio driver proximal the touch sensor surface to output a click sound during the first click cycle; detecting retraction of the first input from the touch sensor surface and a second force magnitude of the first input; and, in response to the second force magnitude falling below a second threshold magnitude less than the first threshold magnitude, actuating the vibrator during a second click cycle distinct from the first click cycle and triggering the audio driver to output the click sound during the second click cycle.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 22, 2022
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Brogan Miller, Charles Watson, Tomer Moscovich, Alexander Grau
  • Patent number: 11520454
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: December 6, 2022
    Assignee: SENSEL, INC.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11513648
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 29, 2022
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20220365653
    Abstract: One variation of a method for characterizing inputs includes: scanning an array of sense electrodes at a first resolution to generate a first force image; detecting a first force input in the first force image; in response to a first geometry dimension of the first force input exceeding a first threshold, characterizing the first force input as a non-stylus input type; in response to the first geometry dimension of the first force input remaining below the first threshold: scanning the array of sense electrodes at a second resolution; detecting a second force input in a second force image; and, in response to a ratio of a force magnitude of the second force input to a geometry dimension of the second force input exceeding a second threshold, characterizing the first force input as a stylus input type; and outputting a location and a type of the first force input.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Patent number: 11494034
    Abstract: A method for calibrating a touch sensor includes: at a calibration system during a calibration routine, applying a probe, at a target selection force, to a sequence of locations on a touch sensor surface of a touch sensor; at the touch sensor, capturing a sequence of touch images representing magnitudes of forces detected on the touch sensor surface during the calibration routine; fusing the sequence of touch images into a response map representing magnitudes of forces detected on the touch sensor surface by the touch sensor responsive to application of the target selection force on the touch sensor surface by the probe during the calibration routine; generating a force compensation map defining threshold forces for detecting selections at the target selection force on the touch sensor surface based on the response map.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 8, 2022
    Assignee: Sensel, Inc.
    Inventors: Tomer Moscovich, Scott Isaacson, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Samuel Palomino
  • Publication number: 20220334645
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Publication number: 20220326829
    Abstract: One variation of a method for manipulating virtual objects within a virtual environment includes: determining a first position of a touch sensor within real space; based on the first position of the touch sensor within real space, bounding a virtual surface of a virtual object within the virtual environment tractable through inputs across the touch sensor; generating a first force vector comprising a magnitude related to a force magnitude of a first input on the touch sensor surface and a direction related to an orientation of the touch sensor within real space; locating an origin of the first force vector within the virtual environment based on a first location of the first input on the touch sensor surface and the first position of the touch sensor within real space; and manipulating the virtual surface of the virtual object within the virtual environment according to the first force vector.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Alexander Meagher Grau, Charles Robert Watson
  • Publication number: 20220326800
    Abstract: One variation of a method includes: defining a first capacitance gradient of capacitance thresholds spanning a capacitive touch sensor; defining a first pressure gradient of pressure thresholds spanning a pressure sensor; reading a capacitance value from the capacitive touch sensor proximal a first location; detecting presence of a first input at the first location in response to the capacitance value exceeding a capacitance threshold assigned to the first location; reading a pressure value from the pressure sensor proximal the first location; detecting presence of a second input proximal the first location in response to the pressure value exceeding a pressure threshold; in response to detecting the first input and detecting the second input: merging the first input and the second input into a confirmed touch input; and generating a first touch image representing the first location and the pressure value of the confirmed touch input.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11460926
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: October 4, 2022
    Assignee: Sensel, Inc.
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Patent number: 11460924
    Abstract: One variation of a system for interfacing a computer system and a user includes: a touch sensor defining a touch sensor surface and extending over an array of sense electrode and drive electrode pairs; a vibrator coupled to the touch sensor surface; and a controller configured to: detect application of an input onto the touch sensor surface and a force magnitude of the first input at a first time; execute a down-click cycle in response to the force magnitude exceeding a threshold magnitude by driving the vibrator to oscillate the touch sensor surface; map a location of the input on the touch sensor surface to a key of a keyboard represented by the touch sensor surface; and output a touch image representing the key and the force magnitude of the input on the touch sensor surface at approximately the first time.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: October 4, 2022
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Patent number: 11435851
    Abstract: One variation of a method for characterizing inputs includes: scanning an array of sense electrodes at a first resolution to generate a first force image; detecting a first force input in the first force image; in response to a first geometry dimension of the first force input exceeding a first threshold, characterizing the first force input as a non-stylus input type; in response to the first geometry dimension of the first force input remaining below the first threshold: scanning the array of sense electrodes at a second resolution; detecting a second force input in a second force image; and, in response to a ratio of a force magnitude of the second force input to a geometry dimension of the second force input exceeding a second threshold, characterizing the first force input as a stylus input type; and outputting a location and a type of the first force input.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: September 6, 2022
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich