Patents by Inventor John Cadwell

John Cadwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11317841
    Abstract: An electrode management solution for neuromonitoring applications such as electroencephalography (EEG) procedures provides for the verification of the locations and connections of electrodes. The brain is modeled as a volume conductor and an expected attenuated signal generated by an electrical signal present in the form of an electrical dipole at any other point in the brain is calculated. A known signal is connected between electrodes at ‘presumed’ locations. This action generates a defined electrical field which can be measured between any of the other electrode locations. The amplitude and phase of the measured signals are a function of the input signal, the volume conductor, and the geometric relations of the two electrodes. By comparing the expected values with the measured values, the relation between the electrodes is verified.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 3, 2022
    Inventor: John A. Cadwell
  • Publication number: 20220110571
    Abstract: A system for deploying an electrode array at a target location through a hole formed in the patient's cranium. The system includes an array of electrodes attached to a substrate and an inserter attached to the substrate and/or the array of electrodes. The inserter, substrate and array of electrodes are configured into a first compressed state and are positioned within the lumen of a cannula. Using the cannula, the system is inserted through the hole, the cannula is then removed, and the inserter is used to transition the substrate and electrode array from the first compressed state to a second uncompressed state, thereby deploying the array of electrodes at the target location.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 14, 2022
    Inventor: John A. Cadwell
  • Patent number: 11273004
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 15, 2022
    Assignee: Cadwell Laboratories, ino.
    Inventor: John A. Cadwell
  • Patent number: 11253182
    Abstract: The present specification discloses an intraoperative neurophysiological monitoring (IONM) system including a computing device capable of executing an IONM software engine, a stimulation module having multiple ports and various stimulation components and recording electrodes. The system is used to implement transcranial electrical stimulation and motor evoked potential monitoring by positioning at least one recording electrode on a patient, connecting the stimulation components to at least one port on the stimulation module, positioning the stimulation components on a patient's head, activating, using the IONM software engine, at least one port, delivering stimulation to the patient; and recording a stimulatory response on the patient.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 22, 2022
    Inventors: Rose Rehfeldt, Ivan Amaya, John A. Cadwell, John A. Cadwell, Jr.
  • Publication number: 20220039760
    Abstract: Systems, devices and methods are described for physiological monitoring, for example monitoring EEG signals to detect the onset or probability of adverse events. The systems, devices and methods discussed herein may monitor received EEG signals to identify trends or patterns in the signal that are either indicative of ongoing seizures or indicative of a future risk of seizure. The systems, devices and methods provide the user with increased control and flexibility in the monitoring processes that produce the alerts. In particular, in some implementations the physician is able to make adjustments during monitoring and customize the process by which EEG data is displayed and analyzed during the patient monitoring without pausing the monitoring to make the adjustments.
    Type: Application
    Filed: September 2, 2021
    Publication date: February 10, 2022
    Inventors: Jinesh J. Jain, John Cadwell, Alison Rhoades
  • Patent number: 11241297
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 8, 2022
    Inventors: John A. Cadwell, Patrick Scott Jensen, Brandon Vazquez, Wayne Dearing
  • Publication number: 20210402039
    Abstract: A portable air treatment system configured to be carried by an individual and deliver air, via a mask, to the individual, is provided. The system includes an air inlet allowing atmospheric air to enter at an air flow rate ranging between 2 liters/min to 10 liters/min, an air compression system connected with the air inlet for compressing the incoming air, thereby increasing the temperature of the air to a minimum temperature of 170° C., a hot air chamber connected with the air compression system for receiving the heated air from the air compression system and retaining the heated air for a period of 30-100 milliseconds, an air decompression system connected with the heated air chamber for expanding the heated air thereby decreasing the temperature of the heated air to a temperature ranging between 14° C. to 45° C., and an air outlet connected with the air expansion system for directing the cooled air to the individual via the mask.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Inventor: John A. Cadwell
  • Patent number: 11185684
    Abstract: A system for deploying an electrode array at a target location through a hole formed in the patient's cranium. The system includes an array of electrodes attached to a substrate and an inserter attached to the substrate and/or the array of electrodes. The inserter, substrate and array of electrodes are configured into a first compressed state and are positioned within the lumen of a cannula. Using the cannula, the system is inserted through the hole, the cannula is then removed, and the inserter is used to transition the substrate and electrode array from the first compressed state to a second uncompressed state, thereby deploying the array of electrodes at the target location.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 30, 2021
    Inventor: John A. Cadwell
  • Publication number: 20210338156
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 4, 2021
    Inventors: Justin Scott, John Cadwell
  • Publication number: 20210228132
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Application
    Filed: February 3, 2021
    Publication date: July 29, 2021
    Inventor: John Cadwell
  • Patent number: 11026627
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: June 8, 2021
    Assignee: Cadwell Laboratories, Inc.
    Inventors: Justin Scott, John Cadwell
  • Patent number: 10945621
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 16, 2021
    Assignee: Cadwell Laboratories, Inc.
    Inventor: John Cadwell
  • Publication number: 20200337575
    Abstract: Methods and systems for conditioning a signal indicative of electrosurgical unit activity are described. A hardware circuit acquires AC current from an electrosurgical unit on patient isolated circuitry and conditions the signal in either of two alternate processing methods. The processed signal is routed as input to an analog to digital converter circuit. A method for determining saturation on referential inputs and recovering inputs to an unsaturated state is also described.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 29, 2020
    Inventors: Ivan Amaya, Michael Batdorf, Rose Delvin, Jason McCann, John A. Cadwell, Ethan Rhodes, Richard A. Villarreal
  • Publication number: 20200315532
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 8, 2020
    Inventor: John A. Cadwell
  • Patent number: 10660567
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: May 26, 2020
    Assignee: Cadwell Laboratories, Inc.
    Inventor: John A Cadwell
  • Publication number: 20200160741
    Abstract: A training simulator for intraoperative neuromonitoring (IONM) systems includes channels where at least one of the channels is identified as an active stimulation channel and a subset of the rest of the channels is identified as reference or pick up sites. Channels of the subset having signal data that exceed a predefined threshold are retained for further processing, while channels with signal data that do not exceed the threshold are eliminated from further reporting. Response data for the remaining channels are generated in advance of a future time when the response would occur. The generated data is time stamped and stored for display at a time window when requested by the system.
    Type: Application
    Filed: June 28, 2019
    Publication date: May 21, 2020
    Inventors: John A. Cadwell, Melissa Kirkup, Mark Romero
  • Publication number: 20200146571
    Abstract: An electrode management solution for neuromonitoring applications such as electroencephalography (EEG) procedures provides for the verification of the locations and connections of electrodes. The brain is modeled as a volume conductor and an expected attenuated signal generated by an electrical signal present in the form of an electrical dipole at any other point in the brain is calculated. A known signal is connected between electrodes at ‘presumed’ locations. This action generates a defined electrical field which can be measured between any of the other electrode locations. The amplitude and phase of the measured signals are a function of the input signal, the volume conductor, and the geometric relations of the two electrodes. By comparing the expected values with the measured values, the relation between the electrodes is verified.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 14, 2020
    Inventor: John A. Cadwell
  • Publication number: 20200146581
    Abstract: Methods of performing diagnostic tests on electroencephalography (EEG) recording devices comprising at least one stimulator coupled with a plurality of EEG electrode recording channels and corresponding recording channel connectors are performed by a test fixture comprising a plurality of resistors coupled with one or more of the EEG electrode recording channels and corresponding recording channel connectors. The methods include performing an impedance test for determining if each EEG recording channel of the EEG recording device has a predefined impedance, performing a channel uniqueness test for each EEG recording channel, performing a test for verifying the state of a switch of the stimulator of the EEG recording device, and performing a test for verifying connector IDs of the recording channel connectors connecting the EEG electrodes to respective EEG recording channels.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: Ethan Rhodes, Richard A. Villarreal, John A. Cadwell, Rose Rehfeldt
  • Publication number: 20200108246
    Abstract: A system for deploying an electrode array at a target location through a hole formed in the patient's cranium. The system includes an array of electrodes attached to a substrate and an inserter attached to the substrate and/or the array of electrodes. The inserter, substrate and array of electrodes are configured into a first compressed state and are positioned within the lumen of a cannula. Using the cannula, the system is inserted through the hole, the cannula is then removed, and the inserter is used to transition the substrate and electrode array from the first compressed state to a second uncompressed state, thereby deploying the array of electrodes at the target location.
    Type: Application
    Filed: September 18, 2019
    Publication date: April 9, 2020
    Inventor: John A. Cadwell
  • Publication number: 20200093566
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: John A. Cadwell, Patrick Scott Jensen, Brandon Vasquez, Wayne Dearing