Patents by Inventor John Cadwell

John Cadwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200000547
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Application
    Filed: February 5, 2019
    Publication date: January 2, 2020
    Inventor: John A. Cadwell
  • Publication number: 20190336019
    Abstract: The present specification discloses an intraoperative neurophysiological monitoring (IONM) system including a computing device capable of executing an IONM software engine, a stimulation module having multiple ports and various stimulation components and recording electrodes. The system is used to implement transcranial electrical stimulation and motor evoked potential monitoring by positioning at least one recording electrode on a patient, connecting the stimulation components to at least one port on the stimulation module, positioning the stimulation components on a patient's head, activating, using the IONM software engine, at least one port, delivering stimulation to the patient; and recording a stimulatory response on the patient.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 7, 2019
    Inventors: Rose Rehfeldt, Ivan Amaya, John A. Cadwell, John A. Cadwell, JR.
  • Publication number: 20190336073
    Abstract: An intraoperative neurophysiological monitoring (IONM) system for identifying and assessing neural structures comprises at least one probe, at least one reference electrode, at least one strip or grid electrode, at least one sensing electrode, and a stimulation module. Threshold responses determined by stimulation during a surgical procedure are used to identify and assess functionality of neural structures. The identified neural structures are avoided and preserved while diseased or damaged tissue is resected during said surgical procedure.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 7, 2019
    Inventors: Melissa Kirkup, Richard A. Villarreal, John A. Cadwell, Jr.
  • Publication number: 20190133476
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Application
    Filed: July 3, 2018
    Publication date: May 9, 2019
    Inventor: John Cadwell
  • Publication number: 20190133522
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Application
    Filed: September 12, 2018
    Publication date: May 9, 2019
    Inventors: Justin Scott, John Cadwell
  • Patent number: 10238467
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 26, 2019
    Assignee: Cadwell Laboratories, Inc.
    Inventor: John A Cadwell
  • Patent number: 10098585
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 16, 2018
    Assignee: Cadwell Laboratories, Inc.
    Inventors: Justin Scott, John Cadwell
  • Patent number: 10039461
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 7, 2018
    Assignee: Cadwell Laboratories, Inc.
    Inventor: John Cadwell
  • Publication number: 20180161123
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 14, 2018
    Inventor: John A. Cadwell
  • Publication number: 20180125421
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Application
    Filed: July 26, 2017
    Publication date: May 10, 2018
    Inventor: John A. Cadwell
  • Patent number: 9730634
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: August 15, 2017
    Assignee: Cadwell Labs
    Inventor: John Cadwell
  • Publication number: 20160174861
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventor: John Cadwell
  • Patent number: 9295401
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: March 29, 2016
    Assignee: CADWELL LABORATORIES, INC.
    Inventor: John Cadwell
  • Publication number: 20160081621
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 24, 2016
    Inventor: John Cadwell
  • Publication number: 20160000382
    Abstract: Systems, devices and methods are described for physiological monitoring, for example monitoring EEG signals to detect the onset or probability of adverse events. The systems, devices and methods discussed herein may monitor received EEG signals to identify trends or patterns in the signal that are either indicative of ongoing seizures or indicative of a future risk of seizure. The systems, devices and methods provide the user with increased control and flexibility in the monitoring processes that produce the alerts. In particular, in some implementations the physician is able to make adjustments during monitoring and customize the process by which EEG data is displayed and analyzed during the patient monitoring without pausing the monitoring to make the adjustments.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: Jinesh J. Jain, John Cadwell, Alison Rhoades
  • Patent number: 9155503
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: October 13, 2015
    Assignee: Cadwell Labs
    Inventor: John Cadwell
  • Publication number: 20140275926
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Justin Scott, John Cadwell
  • Publication number: 20140148725
    Abstract: Systems, devices, and methods are described for neuromonitoring. A minimum stimulus signal required to elicit a threshold neuromuscular response is determined by delivery of stimulus signals to tissue and detection of neuromuscular responses in muscle tissue. The strength of the delivered stimulus signals is varied, for example by adjusting the current amplitude or pulse width of the signals, and muscle responses are measure, for example by detecting EMG signals. The delivered stimuli and corresponding responses are then used to determine a stimulation threshold. The stimulation threshold may be used to indicate at least one of nerve proximity and pedicle integrity.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Inventor: John Cadwell
  • Publication number: 20120109004
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: CADWELL LABS
    Inventor: John Cadwell
  • Patent number: 7914350
    Abstract: An apparatus, system, and method are disclosed for creating an electrical connection with an electrically conductive element. The apparatus includes a first contact element having an engagement surface for engaging a first side of the electrically conductive element and a second contact element positioned opposite the first contact element includes an opposing engagement surface for engaging a second side of the electrically conductive element. The first contact element is slideable past the second contact element to form a scissor-like jaw. A valley formed in at least one of the engagement surface and the opposing engagement surface of the first and second contact elements creates a stage. At least one of the first and the second contact elements are made of an electrically conductive material that conducts an electrical current between the electrically conductive element and at least one of the first and second contact elements.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 29, 2011
    Assignee: Cadwell Labs
    Inventors: John M. Bozich, John Cadwell