Patents by Inventor John D. Affinito

John D. Affinito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8076024
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 13, 2011
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Publication number: 20110206992
    Abstract: The present invention relates to porous structures for energy storage devices. In some embodiments, the porous structure can comprise sulfur and be used in electrochemical cells. Such materials may be useful, for example, in forming one or more electrodes in an electrochemical cell. For example, the systems and methods described herein may comprise the use of an electrode comprising a conductive porous support structure and a plurality of particles comprising sulfur (e.g., as an active species) substantially contained within the pores of the support structure. The inventors have unexpectedly discovered that, in some embodiments, the sizes of the pores within the porous support structure and/or the sizes of the particles within the pores can be tailored such that the contact between the electrolyte and the sulfur is enhanced, while the electrical conductivity and structural integrity of the electrode are maintained at sufficiently high levels to allow for effective operation of the cell.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: Sion Power Corporation
    Inventors: Christopher T.S. Campbell, John D. Affinito, Tracy Earl Kelley
  • Publication number: 20110177398
    Abstract: Electrochemical cells including components and configurations for electrochemical cells, such as rechargeable lithium batteries, are provided. The electrochemical cells described herein may include a combination of components arranged in certain configurations that work together to increase performance of the electrochemical cell. In some embodiments, such combinations of components and configurations described herein may minimize defects, inefficiencies, or other drawbacks that might otherwise exist inherently in prior electrochemical cells, or that might exist inherently in prior electrochemical cells using the same or similar materials as those described herein, but arranged differently.
    Type: Application
    Filed: August 24, 2010
    Publication date: July 21, 2011
    Applicant: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Chariclea Scordilis-Kelley
  • Publication number: 20110165471
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Application
    Filed: July 25, 2008
    Publication date: July 7, 2011
    Applicant: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Publication number: 20110159376
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 30, 2011
    Applicant: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Publication number: 20110076560
    Abstract: The present invention relates to the use of porous structures comprising sulfur in electrochemical cells. Such materials may be useful, for example, in forming one or more electrodes in an electrochemical cell. For example, the systems and methods described herein may comprise the use of an electrode comprising a conductive porous support structure and a plurality of particles comprising sulfur (e.g., as an active species) substantially contained within the pores of the support structure. The inventors have unexpectedly discovered that, in some embodiments, the sizes of the pores within the porous support structure and/or the sizes of the particles within the pores can be tailored such that the contact between the electrolyte and the sulfur is enhanced, while the electrical conductivity and structural integrity of the electrode are maintained at sufficiently high levels to allow for effective operation of the cell.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 31, 2011
    Applicant: Sion Power Corporation
    Inventors: Chariclea Scordilis-Kelley, Yuriy V. Mikhaylik, Igor Kovalev, Vladimir Oleshko, Christopher T.S. Campbell, John D. Affinito
  • Publication number: 20110068001
    Abstract: Electrochemical cells, and more specifically, release systems for the fabrication of electrochemical cells are described. In particular, release layer arrangements, assemblies, methods and compositions that facilitate the fabrication of electrochemical cell components, such as electrodes, are presented. In some embodiments, methods of fabricating an electrode involve the use of a release layer to separate portions of the electrode from a carrier substrate on which the electrode was fabricated. For example, an intermediate electrode assembly may include, in sequence, an electroactive material layer, a current collector layer, a release layer, and a carrier substrate. The carrier substrate can facilitate handling of the electrode during fabrication and/or assembly, but may be released from the electrode prior to commercial use.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 24, 2011
    Applicant: Sion Power Corporation
    Inventors: John D. Affinito, John A. Martens, Ang Xiao, Christopher T.S. Campbell, Yuriy V. Mikhaylik, Igor Kovalev, Ashley H. Bulldis, Zhesheng Xu
  • Publication number: 20110014524
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Application
    Filed: June 17, 2010
    Publication date: January 20, 2011
    Applicant: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Publication number: 20100327811
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Application
    Filed: July 1, 2010
    Publication date: December 30, 2010
    Applicant: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Publication number: 20100291442
    Abstract: Primer arrangements that facilitate electrical conduction and adhesive connection between an electroactive material and a current collector are presented. In some embodiments, primer arrangements described herein include first and second primer layers. The first primer layer may be designed to provide good adhesion to a conductive support. In one particular embodiment, the first primer layer comprises a substantially uncrosslinked polymer having hydroxyl functional groups, e.g., polyvinyl alcohol. The materials used to form the second primer layer may be chosen such that the second primer layer adheres well to both the first primer layer and an electroactive layer. In certain embodiments including combinations of first and second primer layers, one or both of the first and second primer layers comprises less than 30% by weight of a crosslinked polymeric material. A primer including only a single layer of polymeric material is also provided.
    Type: Application
    Filed: October 23, 2008
    Publication date: November 18, 2010
    Applicant: Sion Power Corporation
    Inventors: Yongzhong Wang, Zhesheng Xu, John D. Affinito, Charles D. Skaggs
  • Patent number: 7785730
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: August 31, 2010
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Patent number: 7771870
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 10, 2010
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Publication number: 20100035128
    Abstract: The present invention relates to the application of a force to enhance the performance of an electrochemical cell. The force may comprise, in some instances, an anisotropic force with a component normal to an active surface of the anode of the electrochemical cell. In the embodiments described herein, electrochemical cells (e.g., rechargeable batteries) may undergo a charge/discharge cycle involving deposition of metal (e.g., lithium metal) on a surface of the anode upon charging and reaction of the metal on the anode surface, wherein the metal diffuses from the anode surface, upon discharging. The uniformity with which the metal is deposited on the anode may affect cell performance. For example, when lithium metal is redeposited on an anode, it may, in some cases, deposit unevenly forming a rough surface. The roughened surface may increase the amount of lithium metal available for undesired chemical reactions which may result in decreased cycling lifetime and/or poor cell performance.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 11, 2010
    Applicant: Sion Power Corporation
    Inventors: Chariclea Scordilis-Kelley, John D. Affinito, Lowell D. Jones, Yuriy V. Mikhaylik, Igor Kovalev, William F. Wilkening, Christopher T.S. Campbell, John A. Martens
  • Publication number: 20090291353
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Application
    Filed: July 9, 2009
    Publication date: November 26, 2009
    Applicant: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Publication number: 20080187663
    Abstract: The present invention relates generally to methods for supplying one or more vapors, under reduced pressure, to an environment. The vapor may comprise at least one polymerizable component. In some cases, at least two components may be combined to form the vapor. The components may be provided as separate vapor streams, which may be combined and homogenized. Methods of the invention may also be useful in the deposition of materials on the surface of a substrate. In some cases, the material may form a layer, such as a polymer layer, on the surface of a substrate. The present invention may be useful in applications that require the formation of homogeneous films on the surface of a substrate.
    Type: Application
    Filed: March 23, 2007
    Publication date: August 7, 2008
    Applicant: Sion Power Corporation
    Inventor: John D. Affinito
  • Publication number: 20070224502
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Application
    Filed: April 6, 2006
    Publication date: September 27, 2007
    Applicant: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy Mikhaylik, Yordan Geronov, Christopher Sheehan
  • Patent number: 7112351
    Abstract: The present invention provides a polymer coating method. In the method, in a vacuum chamber, a low temperature monomer evaporation chamber is used to heat a liquid monomer and a cooled substrate at a temperature lower than the liquid monomer reservoir or vapor. The liquid monomer is allowed to condense on the cooled substrate surface where it is polymerized by a radiation source. The process depends on the vapor pressure difference between liquid in the monomer source and liquid condensed on the surface of the cooled substrate. The film thickness is dependent on the temperature difference between the monomer reservoir and the substrate, and the time that is required to move the coated substrate from the evaporation chamber to the cure station. The method is suitable for forming very thin, uniform, pinhole-free, polymer coatings from a variety of monomers, having at least two olefinic groups per molecule, on a variety of substrates.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: September 26, 2006
    Assignee: Sion Power Corporation
    Inventor: John D. Affinito
  • Patent number: 6909230
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: June 21, 2005
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Patent number: 6858259
    Abstract: A method for making a polymer layer with a selected index of refraction. The method includes flash evaporating a polymer precursor material capable of cross linking into a polymer with the selected index of refraction, forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor plasma on a substrate as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma, forming a polymer having the selected index of refraction.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: February 22, 2005
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Patent number: 6811829
    Abstract: A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak