Patents by Inventor John D. Affinito

John D. Affinito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040011288
    Abstract: The present invention provides a polymer coating method. In the method, in a vacuum chamber, a low temperature monomer evaporation chamber is used to heat a liquid monomer and a cooled substrate at a temperature lower than the liquid monomer reservoir or vapor. The liquid monomer is allowed to condense on the cooled substrate surface where it is polymerized by a radiation source. The process depends on the vapor pressure difference between liquid in the monomer source and liquid condensed on the surface of the cooled substrate. The film thickness is dependent on the temperature difference between the monomer reservoir and the substrate, and the time that is required to move the coated substrate from the evaporation chamber to the cure station. The method is suitable for forming very thin, uniform, pinhole-free, polymer coatings from a variety of monomers, having at least two olefinic groups per molecule, on a variety of substrates.
    Type: Application
    Filed: February 25, 2003
    Publication date: January 22, 2004
    Inventor: John D. Affinito
  • Publication number: 20040009306
    Abstract: A method for making a polymer layer with a selected index of refraction. The method includes flash evaporating a polymer precursor material capable of cross linking into a polymer with the selected index of refraction, forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor plasma on a substrate as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma, forming a polymer having the selected index of refraction.
    Type: Application
    Filed: March 19, 2001
    Publication date: January 15, 2004
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20030235648
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Application
    Filed: June 25, 2003
    Publication date: December 25, 2003
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Patent number: 6656537
    Abstract: A method for plasma enhanced chemical vapor deposition of low vapor monomeric materials. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor on a substrate as a cryocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: December 2, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Eric Mast, Michael G. Hall
  • Patent number: 6627267
    Abstract: A method for plasma enhanced chemical vapor deposition of low vapor pressure monomeric materials. The method includes making an evaporate by receiving a plurality of monomeric particles of the low vapor pressure monomeric materials as a spray into a flash evaporation housing, evaporating the spray on an evaporation surface, and discharging the evaporate through an evaporation outlet; making a monomer plasma from the evaporate by passing the evaporate proximate a glow discharge electrode; and cryocondensing the monomer plasma onto the substrate as a cryocondensed monomer. The invention also involves a method for making self-curing polymer layers in a vacuum chamber.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: September 30, 2003
    Assignee: Battelle Memorial Institute
    Inventor: John D. Affinito
  • Patent number: 6613395
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: September 2, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Patent number: 6570325
    Abstract: An encapsulated organic light emitting device. The device may include a substrate, an organic light emitting layer stack adjacent to the substrate, and at least one first barrier stack adjacent to the organic light emitting device, the at least one first barrier stack comprising at least one first barrier layer and at least one first decoupling layer wherein the at least one first barrier stack encapsulates the organic light emitting device. There may be a second barrier stack adjacent to the substrate and located between the substrate and the organic light emitting device. The second barrier stack has at least one second barrier layer and at least one second decoupling layer. A method of making the encapsulated organic light emitting device is also provided.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Gordon L. Graff, Mark E. Gross, John D. Affinito, Ming-Kun Shi, Michael G. Hall, Eric S. Mast, Robert Walty, Nicole Rutherford, Paul E. Burrows, Peter M. Martin
  • Patent number: 6544600
    Abstract: A method for making conjugated polymers. The method includes flash evaporating a conjugated material forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge conjugated material plasma from the evaporate, and cryocondensing the glow discharge conjugated polymer precursor plasma on a substrate as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge conjugated material plasma.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 8, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Mark E. Gross
  • Patent number: 6522067
    Abstract: An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: February 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Gordon L. Graff, Mark E. Gross, John D. Affinito, Ming-Kun Shi, Michael Hall, Eric Mast
  • Patent number: 6509065
    Abstract: The method of the present invention has the steps of (a) flash evaporating a conjugated material in an evaporate outlet forming an evaporate; (b) passing the evaporate to a glow discharge electrode creating a glow discharge conjugated monomer plasma from the evaporate; and (c) cryocondensing the glow discharge conjugated monomer plasma on a substrate and crosslinking the glow discharge conjugated monomer plasma thereon, wherein the crosslinking results from radicals created in the glow discharge conjugated monomer plasma and achieves self curing.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: January 21, 2003
    Assignee: Battelle Memorial Institute
    Inventor: John D. Affinito
  • Patent number: 6506461
    Abstract: The present invention is a method of making a thin film of a polyurethane. The method has the steps of: (a) vacuum coating a thin layer of a solventless mixture of a monomer mixture, said monomer mixture selected from the group consisting of polyols, polyisocyanates and combinations thereof, onto a substrate in a vacuum chamber; and (b) curing the monomer as said thin film of said polyurethane.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: January 14, 2003
    Assignee: Battelle Memorial Institute
    Inventor: John D. Affinito
  • Patent number: 6497924
    Abstract: A method for making a non-linear optical polymer layer. The method includes flash evaporating a liquid polymer precursor mixture containing a plurality of non-linear optical molecules forming an evaporate, cryocondensing the evaporate on a substrate forming a cyrocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer. The surface may be electrically biased for poling during crosslinking.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: December 24, 2002
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Patent number: 6497598
    Abstract: The present invention is an environmental barrier for an OLED. The environmental barrier has a foundation and a cover. Both the foundation and the cover have a top of three layers of (a) a first polymer layer, (b) a ceramic layer, and (c) a second polymer layer. The foundation and/or the cover may have a at least one set of intermediate barrier each having (a) an intermediate polymer layer with (b) an intermediate ceramic layer thereon. In a preferred embodiment, the foundation has a substrate upon which at least a top is deposited. An OLED is constructed upon the top, opposite the substrate. The cover of at least a top then placed over the OLED. The placement may be by gluing or preferably by vacuum deposition. For use as a display, it is preferred that either the ceramic layer(s) in the foundation, cover or both is substantially transparent to the light emitted by the OLED. Each layer of the foundation and the cover is preferably vacuum deposited.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: December 24, 2002
    Assignee: Battelle Memorial Institute
    Inventor: John D. Affinito
  • Publication number: 20020172778
    Abstract: A method for plasma enhanced chemical vapor deposition of low vapor monomeric materials. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor on a substrate as a cryocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Application
    Filed: March 19, 2001
    Publication date: November 21, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Eric Mast, Michael G. Hall
  • Publication number: 20020125822
    Abstract: An encapsulated organic light emitting device. The device may include a substrate, an organic light emitting layer stack adjacent to the substrate, and at least one first barrier stack adjacent to the organic light emitting device, the at least one first barrier stack comprising at least one first barrier layer and at least one first decoupling layer wherein the at least one first barrier stack encapsulates the organic light emitting device. There may be a second barrier stack adjacent to the substrate and located between the substrate and the organic light emitting device. The second barrier stack has at least one second barrier layer and at least one second decoupling layer. A method of making the encapsulated organic light emitting device is also provided.
    Type: Application
    Filed: June 22, 2001
    Publication date: September 12, 2002
    Inventors: Gordon L. Graff, Mark E. Gross, John D. Affinito, Ming-Kun Shi, Michael G. Hall, Eric S. Mast, Robert Walty, Nicole Rutherford, Paul E. Burrows, Peter M. Martin
  • Publication number: 20020122880
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Application
    Filed: April 16, 2001
    Publication date: September 5, 2002
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda Sapochak
  • Publication number: 20020102363
    Abstract: A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Application
    Filed: March 19, 2001
    Publication date: August 1, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20020090460
    Abstract: A method for making a non-linear optical polymer layer. The method includes flash evaporating a liquid polymer precursor mixture containing a plurality of non-linear optical molecules forming an evaporate, cryocondensing the evaporate on a substrate forming a cyrocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer. The surface may be electrically biased for poling during crosslinking.
    Type: Application
    Filed: March 19, 2001
    Publication date: July 11, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20020076506
    Abstract: A method for conformally coating a fixture in a vacuum chamber. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor plasma on the fixture as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge plasma.
    Type: Application
    Filed: March 19, 2001
    Publication date: June 20, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Mark E. Gross
  • Publication number: 20020071911
    Abstract: A method for making conjugated polymers. The method includes flash evaporating a conjugated material forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge conjugated material plasma from the evaporate, and cryocondensing the glow discharge conjugated polymer precursor plasma on a substrate as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge conjugated material plasma.
    Type: Application
    Filed: March 19, 2001
    Publication date: June 13, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Mark E. Gross