Patents by Inventor John D. Hopkins

John D. Hopkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220336494
    Abstract: Some embodiments include an integrated assembly having a second deck over a first deck. The first deck has first memory cell levels, and the second deck has second memory cell levels. A pair of cell-material-pillars pass through the first and second decks. Memory cells are along the first and second memory cell levels. The cell-material-pillars are a first pillar and a second pillar. An intermediate level is between the first and second decks. The intermediate level includes a region between the first and second pillars. The region includes a first segment adjacent the first pillar, a second segment adjacent the second pillar, and a third segment between the first and second segments. The first and second segments include a first composition, and the third segment includes a second composition different from the first composition. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11476332
    Abstract: Some embodiments include an integrated assembly having a source structure. The source structure includes, in ascending order, a first conductively-doped semiconductor material, one or more first insulative layers, a second conductively-doped semiconductor material, one or more second insulative layers, and a third conductively-doped semiconductor material. The source structure includes blocks extending through the second conductively-doped semiconductor material. Conductive levels are over the source structure. Channel material extends vertically along the conductive levels, and extends into the source structure to be in direct contact with the second conductively-doped semiconductor material. One or more memory cell materials are between the channel material and the conductive levels. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11476274
    Abstract: A memory array comprising strings of memory cells comprises an upper stack above a lower stack. The lower stack comprises vertically-alternating lower conductive tiers and lower insulative tiers. The upper stack comprises vertically-alternating upper conductive tiers and upper insulative tiers. An intervening tier is vertically between the upper and lower stacks. The intervening tier is at least predominantly polysilicon and of different composition from compositions of the upper conductive tier and the upper insulative tier immediately-above the intervening tier and of different composition from compositions of the lower conductive tier and the lower insulative tier immediately-below the intervening tier. Channel-material strings of memory cells extend through the upper stack, the intervening tier, and the lower stack. Other structures and methods are disclosed.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu
  • Publication number: 20220328519
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed and individually comprise a vertical stack comprising alternating first tiers and second tiers directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. Horizontally-elongated lines are formed in the conductor material between the laterally-spaced memory-block regions. The horizontally-elongated lines are of different composition from an upper portion of the conductor material that is laterally-between the horizontally-elongated lines.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20220328349
    Abstract: Integrated circuitry comprises vertical conductive vias individually having a lower portion thereof that is directly against conductor material of islands. The islands comprise multiple different composition materials directly above the conductor material. Apart from the conductive vias, the islands individually comprise at least one of (a), (b), or (c), where: (a): a top material that is of different composition from all material that is vertically between the top material and the conductor material; (b): the top material having its top surface in a vertical cross-section extending laterally-outward beyond two opposing laterally-outermost edges of a top surface of the material that is immediately directly below the top material; and (c): is of different composition from that of an upper portion of the conductor material and including a portion thereof that is elevationally coincident with the conductor material or that is directly against the conductor material.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 13, 2022
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Shuangqiang Luo, Alyssa N. Scarbrough
  • Patent number: 11469249
    Abstract: A method of forming a semiconductor device comprises forming sacrificial structures and support pillars on a material. Tiers are formed over the sacrificial structures and support pillars and tier pillars and tier openings are formed to expose the sacrificial structures. One or more of the tier openings comprises a greater critical dimension than the other tier openings. The sacrificial structures are removed to form a cavity. A cell film is formed over sidewalls of the tier pillars, the cavity, and the one or more tier openings. A fill material is formed in the tier openings and adjacent to the cell film and a portion removed from the other tier openings to form recesses adjacent to an uppermost tier. Substantially all of the fill material is removed from the one or more tier openings. A doped polysilicon material is formed in the recesses and the one or more tier openings. A conductive material is formed in the recesses and in the one or more tier openings.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: October 11, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, David H. Wells, John D. Hopkins, Kevin Y. Titus
  • Publication number: 20220320129
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed that individually comprise a vertical stack comprising alternating first tiers and second tiers directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. Horizontally-elongated lines are formed in the conductor tier between the laterally-spaced memory-block regions. The horizontally-elongated lines are of different composition from an upper portion of the conductor material and comprise metal material. After the horizontally-elongated lines are formed, conductive material is formed in a lower of the first tiers and that directly electrically couples together the channel material of individual of the channel-material strings and the conductor material of the conductor tier.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20220319985
    Abstract: Some embodiments include a method in which a first stack of alternating first and second levels is formed. At least some of the first and second levels are configured as steps. Each of the steps has one of the second levels and one of the first levels. An etch-stop material and a liner are formed over the stack. A first material is formed over the etch-stop material. Openings are formed to extend through the first material to the etch-stop material. Sacrificial material is formed within the openings. A second stack is formed over the first stack. A second material is formed over the first material. Conductive layers are formed within the first levels. Additional openings are formed to extend to the sacrificial material, and are then extended through the sacrificial material to the conductive layers within the steps. Some embodiments include integrated assemblies.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, John D. Hopkins
  • Publication number: 20220320128
    Abstract: Some embodiments include an integrated assembly having a memory region and another region adjacent the memory region. Channel-material-pillars are arranged within the memory region, and conductive posts are arranged within said other region. A source structure is coupled to lower regions of the channel-material-pillars. A panel extends across the memory region and said other region, and separates a first memory-block-region from a second memory-block-region. Doped-semiconductor-material is directly adjacent to the panel within the memory region and the other region. Rings laterally surround lower regions of the conductive posts. The rings are between the conductive posts and the doped-semiconductor-material. The rings include laminates of two or more materials, with at least one of said two or more materials being insulative. Some embodiments include methods for forming integrated assemblies.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Alyssa N. Scarbrough, John D. Hopkins
  • Publication number: 20220310522
    Abstract: A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of ?-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 29, 2022
    Inventors: Jordan D. Greenlee, John D. Hopkins, Everett A. McTeer, Yiping Wang, Rajesh Balachandran, Rita J. Klein, Yongjun J. Hu
  • Publication number: 20220310641
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. A stack comprising vertically-alternating first tiers and second tiers is formed above the conductor tier. The stack comprises laterally-spaced memory-block regions. Channel-material strings extend through the first tiers and the second tiers. Material of the first tiers is of different composition from material of the second tiers. Spaced insulator-material bodies are formed in and longitudinally-along opposing sides of individual of the memory-block regions in a lowest of the first tiers. After forming the spaced insulator-material bodies, conductive material is formed in the lowest first tier that directly electrically couples together the channel material of individual of the channel-material strings and the conductor material of the conductor tier. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Nancy M. Lomeli
  • Publication number: 20220301860
    Abstract: A method of forming a microelectronic device comprises forming openings in an interdeck region and a first deck structure, the first deck structure comprising alternating levels of a first insulative material and a second insulative material, forming a first sacrificial material in the openings, removing a portion of the first sacrificial material from the interdeck region to expose sidewalls of the first insulative material and the second insulative material in the interdeck region, removing a portion of the first insulative material and the second insulative material in the interdeck region to form tapered sidewalls in the interdeck region, removing remaining portions of the first sacrificial material from the openings, and forming at least a second sacrificial material in the openings. Related methods of forming a microelectronic devices and related microelectronic devices are disclosed.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 22, 2022
    Inventors: John D. Hopkins, Damir Fazil
  • Publication number: 20220302032
    Abstract: A microelectronic device includes a first conductive structure, a barrier structure, a conductive liner structure, and a second conductive structure. The first conductive structure is within a first filled opening in a first dielectric structure. The barrier structure is within the first filled opening in the first dielectric structure and vertically overlies the first conductive structure. The conductive liner structure is on the barrier structure and is within a second filled opening in a second dielectric structure vertically overlying the first dielectric structure. The second conductive structure vertically overlies and is horizontally surrounded by the conductive liner structure within the second filled opening in the second dielectric structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Jordan D. Greenlee, Christian George Emor, Luca Fumagalli, John D. Hopkins, Rita J. Klein, Christopher W. Petz, Everett A. McTeer
  • Publication number: 20220302154
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material-string structures of memory cells extend through the insulative tiers and the conductive tiers. The channel-material-string structures individually comprise an upper portion above and joined with a lower portion. Individual of the channel-material-string structures comprise at least one external jog surface in a vertical cross-section where the upper and lower portions join.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Nancy M. Lomeli
  • Patent number: 11450601
    Abstract: Some embodiments include an assembly having a memory stack which includes dielectric levels and conductive levels. A select gate structure is over the memory stack. A trench extends through the select gate structure. The trench has a first side and an opposing second side, along a cross-section. The trench splits the select gate structure into a first select gate configuration and a second select gate configuration. A void is within the trench and is laterally between the first and second select gate configurations. Channel material pillars extend through the memory stack. Memory cells are along the channel material pillars.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: September 20, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, George Matamis
  • Publication number: 20220278051
    Abstract: A microelectronic device comprises a stack structure, a staircase structure, composite pad structures, and conductive contact structures. The stack structure comprises vertically alternating conductive structures and insulative structures arranged in tiers. Each of the tiers individually comprises one of the conductive structures and one of the insulative structures. The staircase structure has steps comprising edges of at least some of the tiers of the stack structure. The composite pad structures are on the steps of the staircase structure. Each of the composite pad structures comprises a lower pad structure, and an upper pad structure overlying the lower pad structure and having a different material composition than the lower pad structure. The conductive contact structures extend through the composite pad structures and to the conductive structures of the stack structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Alyssa N. Scarbrough, Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11417682
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include terminal regions, and include nonterminal regions proximate the terminal regions. The terminal regions are vertically thicker than the nonterminal regions, and are configured as segments which are vertically stacked one atop another and which are vertically spaced from one another. Blocks are adjacent to the segments and have approximately a same vertical thickness as the segments. The blocks include high-k dielectric material, charge-blocking material and charge-storage material. Channel material extends vertically along the stack and is adjacent to the blocks. Some embodiments include integrated assemblies. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Shyam Surthi, Jordan D. Greenlee
  • Patent number: 11411021
    Abstract: Some embodiments include an integrated assembly having a second deck over a first deck. The first deck has first memory cell levels, and the second deck has second memory cell levels. A pair of cell-material-pillars pass through the first and second decks. Memory cells are along the first and second memory cell levels. The cell-material-pillars are a first pillar and a second pillar. An intermediate level is between the first and second decks. The intermediate level includes a region between the first and second pillars. The region includes a first segment adjacent the first pillar, a second segment adjacent the second pillar, and a third segment between the first and second segments. The first and second segments include a first composition, and the third segment includes a second composition different from the first composition. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11411085
    Abstract: Methods of fabricating a semiconductor structure comprise forming an opening through a stack of alternating tier dielectric materials and tier control gate materials, and laterally removing a portion of each of the tier control gate materials to form control gate recesses. A charge blocking material comprising a charge trapping portion is formed on exposed surfaces of the tier dielectric materials and tier control gate materials in the opening. The control gate recesses are filled with a charge storage material. The method further comprises removing the charge trapping portion of the charge blocking material disposed horizontally between the charge storage material and an adjacent tier dielectric material to produce air gaps between the charge storage material and the adjacent tier dielectric material. The air gaps may be substantially filled with dielectric material or conductive material. Also disclosed are semiconductor structures obtained from such methods.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventor: John D. Hopkins
  • Patent number: 11411012
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a lower portion of a stack, that will comprise vertically-alternating first tiers and second tiers, on a substrate. The stack comprises laterally-spaced memory-block regions. Material of the first tiers is of different composition from material of the second tiers. Horizontally-elongated lines are formed in a lowest first tier and that are individually between immediately-laterally-adjacent of the memory-block regions. The lines comprise sacrificial material of different composition from the first-tier material that is or will be formed above the lowest first tier and from the second-tier material that is or will be formed above the lowest first tier. The vertically-alternating first tiers and second tiers of an upper portion of the stack are formed above the lower portion and the lines.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventor: John D. Hopkins