Patents by Inventor John Donohue

John Donohue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230324368
    Abstract: Systems, devices and methods for cell analysis provide an end user with real-time cell analysis and imaging of single cells in a population. Various cell analysis systems can provide both optical imaging, as well as electroscopic imaging, which is an image of cellular response as detected by sensors covering a cell footprint or cellular efflux. An automated fluidic system can provide an end-user selected sequence of reagents to cells, while precision controlled sensor array device thermostatting, and analysis compartment environmental control provide consistency in the cell analysis system environment.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Daniel BEACHAM, Wolfgang HINZ, John DONOHUE, Scott PARKER
  • Publication number: 20230125382
    Abstract: Analyzing cells disposed on a sensor array surface of a ChemFET sensor array, may include flowing a solution having a step change in pH across the sensor array surface, wherein ChemFET sensors of the sensor array generate signals in response to the step change in pH to produce electroscopic image data. Multiple frames of the electroscopic image data are acquired during an acquisition time interval. Each frame corresponds to signal samples generated by the sensor array measured at a sampling time during the acquisition time interval. Each frame comprises pixels, wherein a given pixel in the frame corresponds to a signal sample from a given sensor in the sensor array. The electroscopic image data is segmented, based on characteristics of the signal samples, into cell regions corresponding to locations of the cells on the sensor array surface and background regions corresponding to areas on the sensor array having no cells.
    Type: Application
    Filed: October 27, 2022
    Publication date: April 27, 2023
    Inventors: Scott PARKER, Hannah DEVYLDERE, John DONOHUE, Daisy CHILIN
  • Publication number: 20230129295
    Abstract: Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Wolfgang HINZ, John DONOHUE, Daniel BEACHAM
  • Publication number: 20230123796
    Abstract: A coated optical component includes an optical component and a conformal coating. The optical component is crystalline calcium fluoride and the conformal coating is an atomic layer deposition (ALD) coating in contact with a surface of the optical component. The ALD coating includes a metal fluoride ALD coating having a metal different from calcium. The ALD coating can include other metal oxide or metalloid oxide ALD coating layers. The method for making the coated optical component includes depositing an atomic layer deposition (ALD) coating on a surface of the optical component, where the ALD coating can be a metalloid oxide, a metal oxide, a metal fluoride having a metal that is different from calcium, or combinations of these. Sulfur hexafluoride is used as a fluorine source in the ALD process.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 20, 2023
    Inventors: Donald Erwin Allen, Gerald Philip Cox, Keith John Donohue, Ming-Huang Huang, Hoon Kim, Jue Wang
  • Patent number: 11567036
    Abstract: Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: January 31, 2023
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Donohue, Daniel Beacham
  • Publication number: 20220146450
    Abstract: A method for correcting nucleotide incorporation signals for fluid potential effects or disturbances arising in nucleic acid sequencing-by-synthesis includes: disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, the template polynucleotide strands having a sequencing primer and a polymerase bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed through a fluid manifold, the fluid manifold comprising passages for flowing nucleotide species and a branch passage for flowing a solution, the branch passage comprising a reference electrode and a sensing electrode; obtaining a plurality of nucleotide incorporation signals corresponding to the plurality of defined spaces, the nucleotide incorporation signals having a signal intensity related to a number of nucleotide incorporations; and correcting at least some of the plurality of nucleotide incorporation signals for fluid potential effects or dis
    Type: Application
    Filed: October 12, 2021
    Publication date: May 12, 2022
    Inventors: Chiu Tai Andrew WONG, Todd REARICK, John DONOHUE
  • Publication number: 20220065890
    Abstract: Various embodiments of a fluidic system of the present teachings are configured to execute a sequence of fluidic operations over the course of a next generation sequencing analysis for the sequential delivery of various solutions used over the course of analysis to a multilane sensor device. Exemplary fluidic operations include washing, priming and nucleotide reagent delivery through a fluidic multiplexer block that is configured to provide independent fluid distribution to each lane of a multilane sensor device used for detection during an analysis. Accordingly, any number or combination of lanes can be used during an analysis, so that during an analysis one lane in any position can be used singly during a run, all four lanes can be used simultaneously during a run, or any combination of lanes can be used simultaneously during a run.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 3, 2022
    Inventors: Albert L. Carrillo, John Donohue
  • Patent number: 11169111
    Abstract: A method for correcting nucleotide incorporation signals for fluid potential effects or disturbances arising in nucleic acid sequencing-by-synthesis includes: disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, the template polynucleotide strands having a sequencing primer and a polymerase bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed through a fluid manifold, the fluid manifold comprising passages for flowing nucleotide species and a branch passage for flowing a solution, the branch passage comprising a reference electrode and a sensing electrode; obtaining a plurality of nucleotide incorporation signals corresponding to the plurality of defined spaces, the nucleotide incorporation signals having a signal intensity related to a number of nucleotide incorporations; and correcting at least some of the plurality of nucleotide incorporation signals for fluid potential effects or dis
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 9, 2021
    Assignee: Life Technologies Corporation
    Inventors: Chiu Tai Andrew Wong, Todd Rearick, John Donohue
  • Publication number: 20200088676
    Abstract: Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 19, 2020
    Inventors: Wolfgang Hinz, John Donohue, Daniel Beacham
  • Publication number: 20200041444
    Abstract: A method for correcting nucleotide incorporation signals for fluid potential effects or disturbances arising in nucleic acid sequencing-by-synthesis includes: disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, the template polynucleotide strands having a sequencing primer and a polymerase bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed through a fluid manifold, the fluid manifold comprising passages for flowing nucleotide species and a branch passage for flowing a solution, the branch passage comprising a reference electrode and a sensing electrode; obtaining a plurality of nucleotide incorporation signals corresponding to the plurality of defined spaces, the nucleotide incorporation signals having a signal intensity related to a number of nucleotide incorporations; and correcting at least some of the plurality of nucleotide incorporation signals for fluid potential effects or dis
    Type: Application
    Filed: March 22, 2019
    Publication date: February 6, 2020
    Inventors: Chiu Tai Andrew WONG, Todd REARICK, John DONOHUE
  • Patent number: 10416112
    Abstract: A method for correcting nucleotide incorporation signals for fluid potential effects or disturbances arising in nucleic acid sequencing-by-synthesis includes: disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, the template polynucleotide strands having a sequencing primer and a polymerase bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed through a fluid manifold, the fluid manifold comprising passages for flowing nucleotide species and a branch passage for flowing a solution, the branch passage comprising a reference electrode and a sensing electrode; obtaining a plurality of nucleotide incorporation signals corresponding to the plurality of defined spaces, the nucleotide incorporation signals having a signal intensity related to a number of nucleotide incorporations; and correcting at least some of the plurality of nucleotide incorporation signals for fluid potential effects or dis
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: September 17, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chiu Tai Andrew Wong, Todd Rearick, John Donohue
  • Publication number: 20190204293
    Abstract: A chemical sensor for analyte solutions utilizes AC excitation of a sample distributed in one or more micro-wells of a measurement device. The sensors utilize narrowband filtering of the measured signal(s), resulting in a large reduction in noise. Synchronous detection is utilized to provide high discrimination of the desired signal from noise or interfering sources. Conductance and by extension impedance is measured by applying a constant alternating current (AC) voltage across the electrodes of each micro-well and measuring the resulting current.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 4, 2019
    Inventors: John DONOHUE, Phil WAGGONER, Scott PARKER, Wolfgang HINZ, Chiu Tai Andrew WONG
  • Patent number: 9832679
    Abstract: A window regulator for improving the performance of communications networks is described. In a communications network, data is sent downstream from a sender to a receiver, and acknowledgements are sent back upstream. When data is received at the receiver, the data is placed in a buffer and an acknowledgement of receipt may be sent. If no acknowledgement is received by a sender after a certain period of time, the sender retransmits the data. The receiver communicates how much data the receiver is willing to receive at any given time by sending an advertised window to the sender. The window regulator sets the size of the advertised window based on measurements of capacity in the network to improve the amount and rate of data sent downstream while avoiding loss of data and subsequent retransmissions.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: November 28, 2017
    Assignee: Citrix Systems, Inc.
    Inventors: William M. Turner, John Donohue
  • Publication number: 20170030854
    Abstract: Provided herein is a sensor comprising a substrate having a first reaction region and a second reaction region, a first electrode associated with the first reaction region, a second electrode associated with the second reaction region and a third electrode wherein the third electrode is common to both the first reaction region and the second reaction region.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventors: Creighton BUIE, John DONOHUE, Chiu Tai Andrew WONG, James A. BALL, Wolfgang HINZ, James BUSTILLO, Jordan OWENS, Shifeng LI
  • Publication number: 20160267811
    Abstract: A method for retaining new languages through a method of selecting subsets of sentence forms of the new language so that the selected subsets can be immediately reproduced either in isolation or in different sentence forms, and wherein the selected subsets may be subject to further sub-sectioning.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 15, 2016
    Inventor: John DONOHUE
  • Patent number: 9435733
    Abstract: A system for measuring a characteristic of a solar cell is disclosed and includes a light source irradiating an optical signal having a spectral range from about 100 nm to about 3000 nm, a wavelength selector configured to selectively narrow the spectral range of the optical signal, a beam splitter, a reference detector in optical communication with the beam splitter and configured to measure a characteristic of the optical signal, a specimen irradiated with the optical signal, a reflectance detector in optical communication with the specimen via the beam splitter and configured to measure an optical characteristic of the optical signal reflected by the specimen, a multiplexer in communication with at least one of the reference detector, specimen, and reflectance detector, and a processor in communication with at least one of the reference detector, specimen, and reflectance detector via the multiplexer and configured to calculate at least one characteristic of the specimen.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: September 6, 2016
    Assignee: NEWPORT CORPORATION
    Inventors: Razvan Ciocan, John Donohue, Arkady Feldman, Zhuoyun Li
  • Publication number: 20160103093
    Abstract: A method for correcting nucleotide incorporation signals for fluid potential effects or disturbances arising in nucleic acid sequencing-by-synthesis includes: disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, the template polynucleotide strands having a sequencing primer and a polymerase bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed through a fluid manifold, the fluid manifold comprising passages for flowing nucleotide species and a branch passage for flowing a solution, the branch passage comprising a reference electrode and a sensing electrode; obtaining a plurality of nucleotide incorporation signals corresponding to the plurality of defined spaces, the nucleotide incorporation signals having a signal intensity related to a number of nucleotide incorporations; and correcting at least some of the plurality of nucleotide incorporation signals for fluid potential effects or dis
    Type: Application
    Filed: September 14, 2015
    Publication date: April 14, 2016
    Inventors: Chiu Tai Andrew WONG, Todd REARICK, John DONOHUE
  • Publication number: 20150282002
    Abstract: A window regulator for improving the performance of communications networks is described. In a communications network, data is sent downstream from a sender to a receiver, and acknowledgements are sent back upstream. When data is received at the receiver, the data is placed in a buffer and an acknowledgement of receipt may be sent. If no acknowledgement is received by a sender after a certain period of time, the sender retransmits the data. The receiver communicates how much data the receiver is willing to receive at any given time by sending an advertised window to the sender. The window regulator sets the size of the advertised window based on measurements of capacity in the network to improve the amount and rate of data sent downstream while avoiding loss of data and subsequent retransmissions.
    Type: Application
    Filed: June 9, 2015
    Publication date: October 1, 2015
    Inventors: William M. TURNER, John DONOHUE
  • Patent number: 9059934
    Abstract: A window regulator for improving the performance of communications networks is described. In a communications network, data is sent downstream from a sender to a receiver, and acknowledgements are sent back upstream. When data is received at the receiver, the data is placed in a buffer and an acknowledgement of receipt may be sent. If no acknowledgement is received by a sender after a certain period of time, the sender retransmits the data. The receiver communicates how much data the receiver is willing to receive at any given time by sending an advertised window to the sender. The window regulator sets the size of the advertised window based on measurements of capacity in the network to improve the amount and rate of data sent downstream while avoiding loss of data and subsequent retransmissions.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 16, 2015
    Assignee: Citrix Systems, Inc.
    Inventors: William M. Turner, John Donohue
  • Publication number: 20140252242
    Abstract: A system for measuring a characteristic of a solar cell is disclosed and includes a light source irradiating an optical signal having a spectral range from about 100 nm to about 3000 nm, a wavelength selector configured to selectively narrow the spectral range of the optical signal, a beam splitter, a reference detector in optical communication with the beam splitter and configured to measure a characteristic of the optical signal, a specimen irradiated with the optical signal, a reflectance detector in optical communication with the specimen via the beam splitter and configured to measure an optical characteristic of the optical signal reflected by the specimen, a multiplexer in communication with at least one of the reference detector, specimen, and reflectance detector, and a processor in communication with at least one of the reference detector, specimen, and reflectance detector via the multiplexer and configured to calculate at least one characteristic of the specimen.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: NEWPORT CORPORATION
    Inventors: Razvan Ciocan, John Donohue, Arkady Feldman, Zhuoyun Li