Patents by Inventor John E. Burnes

John E. Burnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890481
    Abstract: The disclosure describes techniques for delivering electrical stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. AV nodal stimulation is employed during an atrial tachyarrhythmia episode with rapid ventricular conduction to distinguish ventricular tachyarrhythmia from supraventricular tachycardia and thereby prevent delivering inappropriate therapy to a patient.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 6, 2024
    Assignee: Medtronic, Inc.
    Inventors: Eduardo N. Warman, John E. Burnes, Koen J. Michels, Paul D. Ziegler, Lillian Kornet
  • Publication number: 20240000350
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra
  • Publication number: 20230380773
    Abstract: This disclosure is directed to devices, systems, and techniques for monitoring a patient condition. In some examples, a medical device system includes a medical device comprising a set of sensors. Additionally, the medical device system includes processing circuitry configured to identify, based on at least one signal of the set of signals, a time of an event corresponding to the patient and set a time window based on the time of the event. Additionally, the processing circuitry is configured to save, to a fall risk database in a memory, a set of data including one or more signals of the set of signals so that the fall risk database may be analyzed in order to determine a fall risk score corresponding to the patient, wherein the set of data corresponds to the time window.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: John E. Burnes, Mirko de Melis, Stacy D. Beske Radford
  • Publication number: 20230346287
    Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Inventors: John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
  • Patent number: 11759131
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: September 19, 2023
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra
  • Patent number: 11737713
    Abstract: This disclosure is directed to devices, systems, and techniques for monitoring a patient condition. In some examples, a medical device system includes a medical device comprising a set of sensors. Additionally, the medical device system includes processing circuitry configured to identify, based on at least one signal of the set of signals, a time of an event corresponding to the patient and set a time window based on the time of the event. Additionally, the processing circuitry is configured to save, to a fall risk database in a memory, a set of data including one or more signals of the set of signals so that the fall risk database may be analyzed in order to determine a fall risk score corresponding to the patient, wherein the set of data corresponds to the time window.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: August 29, 2023
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Mirko de Melis, Stacy D. Beske Radford
  • Patent number: 11717208
    Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
  • Patent number: 11602313
    Abstract: This disclosure is directed to devices, systems, and techniques for monitoring a patient condition. In some examples, a medical device system includes a medical device comprising a set of sensors. Additionally, the medical device system includes processing circuitry configured to identify, based on at least one signal of the set of signals, a time of an event corresponding to the patient and set a time window based on the time of the event. Additionally, the processing circuitry is configured to save, to a fall risk database in a memory, a set of data including one or more signals of the set of signals so that the fall risk database may be analyzed in order to determine a fall risk score corresponding to the patient, wherein the set of data corresponds to the time window.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: March 14, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Burnes, Mirko de Melis, Stacy D. Beske Radford
  • Publication number: 20230021724
    Abstract: This disclosure is directed to devices, systems, and techniques for monitoring a patient condition. In some examples, a medical device system includes a medical device comprising a set of sensors. Additionally, the medical device system includes processing circuitry configured to identify, based on at least one signal of the set of signals, a time of an event corresponding to the patient and set a time window based on the time of the event. Additionally, the processing circuitry is configured to save, to a fall risk database in a memory, a set of data including one or more signals of the set of signals so that the fall risk database may be analyzed in order to determine a fall risk score corresponding to the patient, wherein the set of data corresponds to the time window.
    Type: Application
    Filed: September 30, 2022
    Publication date: January 26, 2023
    Inventors: John E. Burnes, Mirko de Melis, Stacy D. Beske Radford
  • Publication number: 20220031253
    Abstract: This disclosure is directed to devices, systems, and techniques for monitoring a patient condition. In some examples, a medical device system includes a medical device comprising a set of sensors. Additionally, the medical device system includes processing circuitry configured to identify, based on at least one signal of the set of signals, a time of an event corresponding to the patient and set a time window based on the time of the event. Additionally, the processing circuitry is configured to save, to a fall risk database in a memory, a set of data including one or more signals of the set of signals so that the fall risk database may be analyzed in order to determine a fall risk score corresponding to the patient, wherein the set of data corresponds to the time window.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Inventors: John E. Burnes, Mirko de Melis, Stacy D. Beske Radford
  • Publication number: 20220026386
    Abstract: An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a work electrode and at least one diffusion control layer. The work electrode may be electrically coupled to the common reference electrode. The electrode may include a reagent substrate configured to react with an analyte to produce a signal indicative of a concentration of the analyte. The at least one diffusion control layer may be configured to control the diffusion of the analyte to the work electrode.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Jennifer Lorenz Marckmann, Mohsen Askarinya, David L. Probst, John E. Burnes
  • Patent number: 11116456
    Abstract: In some examples, determining a heart failure status of a patient using a medical device comprising a plurality of electrodes includes determining an estimated arterial pressure waveform of the patient based on an arterial impedance signal received from at least two of the plurality of electrodes. The estimated arterial pressure waveform may comprise a plurality of arterial pressure cycles. Each of the plurality of arterial pressure cycles may correspond to a different cardiac cycle of a plurality of cardiac cycles of the patient. At least one value of an intrinsic frequency of the corresponding arterial pressure cycle may be determined for at least some of the plurality of cardiac cycles and the heart failure status of the patient may be determined based on the at least one value of the intrinsic frequency.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, John E. Burnes, Tommy D. Bennett, Shantanu Sarkar, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20210267498
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 2, 2021
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra
  • Patent number: 11013436
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra
  • Publication number: 20210128005
    Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
    Type: Application
    Filed: July 6, 2020
    Publication date: May 6, 2021
    Inventors: John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
  • Publication number: 20210093254
    Abstract: Techniques for determining a likeliness that a patient may incur an adverse health event are described. An example technique may include utilizing a probability model that uses as evidence nodes various diagnostic states of physiological parameters, which may include one or more subcutaneous impedance parameters. The probability model may include a Bayesian Network that determines a posterior probability of the adverse health event occurring within a predetermined period of time.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 1, 2021
    Inventors: Shantanu Sarkar, Jodi L. Redemske, Val D. Eisele, III, Eduardo N. Warman, John E. Burnes, Jerry D. Reiland, Brian B. Lee, Todd M. Zielinski, Matthew T Reinke
  • Publication number: 20210008370
    Abstract: The disclosure describes techniques for delivering electrical stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. AV nodal stimulation is employed during an atrial tachyarrhythmia episode with rapid ventricular conduction to distinguish ventricular tachyarrhythmia from supraventricular tachycardia and thereby prevent delivering inappropriate therapy to a patient.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventors: Eduardo N. Warman, John E. Burnes, Koen J. Michels, Paul D. Ziegler, Lillian Kornet
  • Publication number: 20200405244
    Abstract: In some examples, determining a heart failure status of a patient using a medical device comprising a plurality of electrodes includes determining an estimated arterial pressure waveform of the patient based on an arterial impedance signal received from at least two of the plurality of electrodes. The estimated arterial pressure waveform may comprise a plurality of arterial pressure cycles. Each of the plurality of arterial pressure cycles may correspond to a different cardiac cycle of a plurality of cardiac cycles of the patient. At least one value of an intrinsic frequency of the corresponding arterial pressure cycle may be determined for at least some of the plurality of cardiac cycles and the heart failure status of the patient may be determined based on the at least one value of the intrinsic frequency.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Douglas A. Hettrick, John E. Burnes, Tommy D. Bennett, Shantanu Sarkar, Eduardo N. Warman, Todd M. Zielinski
  • Patent number: 10786678
    Abstract: The disclosure describes techniques for delivering electrical stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. AV nodal stimulation is employed during an atrial tachyarrhythmia episode with rapid ventricular conduction to distinguish ventricular tachyarrhythmia from supraventricular tachycardia and thereby prevent delivering inappropriate therapy to a patient.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 29, 2020
    Assignee: Medtronic, Inc.
    Inventors: Eduardo N. Warman, John E. Burnes, Koen J. Michels, Paul D. Ziegler, Lilian Kornet
  • Publication number: 20190069815
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra