Patents by Inventor John E. Burnes

John E. Burnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8478406
    Abstract: Refractory period stimulation (RPS) disclosed herein includes apparatus and methods to enhance cardiac performance by delivering monophasic stimulation pulses during the refractory period. The disclosure describes several system level improvements to RPS that include one or more of the following: (i) Delivery of RPS therapy pulses at multiple sites in an automatically alternating way to avoid increasing demand at any one location for prolonged periods of time. (ii) Delivery of RPS therapy pulses at multiple sites to determine one or more optimal electrode configurations for chronic RPS therapy delivery. (iii) Use of separate electrode(s) for sensing ventricular activity to properly time and adjust the application of RPS thereby avoiding limitations associated with electrode polarization that occurs due to the amount of energy delivered during the RPS. (iv) Use of a relatively long active recharge pulse at the RPS stimulation electrodes to remove the undesirable effects of polarization.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: July 2, 2013
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, David E. Euler
  • Patent number: 8452394
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Paul G. Krause, William T. Donofrio, James D. Reinke, Gerald P. Arne, David J. Peichel, Xiaohong Zhou, Timothy Davis
  • Patent number: 8428716
    Abstract: A method of left ventricular pacing including automated adjustment of a atrio-ventricular (AV) pacing delay interval and intrinsic AV nodal conduction testing. It includes—upon expiration or reset of a programmable AV Evaluation Interval (AVEI)—performing the following: temporarily increasing a paced AV interval and a sensed AV interval and testing for adequate AV conduction and measuring an intrinsic atrio-ventricular (PR) interval for a right ventricular (RV) chamber. In the event that the AV conduction test reveals an AV conduction block condition then a pacing mode-switch to a bi-ventricular (Bi-V) pacing mode occurs and the magnitude of the AVEI is increased.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 23, 2013
    Assignee: Medtronic, Inc.
    Inventors: Thomas J. Mullen, John E. Burnes, Aleksandrew T. Sambelashvili
  • Patent number: 8406893
    Abstract: A therapy or monitoring system may implement one or more techniques to mitigate interference between operation of a charging device that charges a first implantable medical device (IMD) implanted in a patient and a second IMD implanted in the patient. In some examples, the techniques may include modifying an operating parameter of the charging device in response to receiving an indication that a second IMD is implanted in the patient. The techniques also may include modifying an operating parameter of the second IMD in response to detecting the presence or operation of the charging device.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: March 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Paul G. Krause, William T. Donofrio, Gerald P. Arne, James D. Reinke, David J. Peichel, Timothy Davis, John E. Burnes
  • Publication number: 20130013017
    Abstract: Methods and apparatus of left ventricular pacing including automated adjustment of a atrio-ventricular (AV) pacing delay interval and intrinsic AV nodal conduction testing. Thus, in the event that the AV conduction test reveals a physiologically acceptable intrinsic PR interval then storing the physiologically acceptable PR interval in a memory structure (e.g., a median P-R from one or more cardiac cycles) and delivering fusion pacing using a decremented value of the intrinsic PR interval.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 10, 2013
    Applicant: Medtronic, Inc.
    Inventors: Thomas J. Mullen, John E. Burnes, Aleksandre T. Sambelashvili
  • Publication number: 20120303084
    Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
  • Patent number: 8315713
    Abstract: This disclosure is directed to extra, intra, and transvascular medical lead placement techniques for arranging medical leads and electrical stimulation and/or sensing electrodes proximate nerve tissue within a patient.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 20, 2012
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Mary M. Morris, Michael R. S. Hill, Avram Scheiner, Ruth N. Klepfer, Matthew D. Bonner
  • Publication number: 20120290030
    Abstract: The disclosure describes techniques for delivering electrical stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. AV nodal stimulation is employed during an atrial tachyarrhythmia episode with rapid ventricular conduction to distinguish ventricular tachyarrhythmia from supraventricular tachycardia and thereby prevent delivering inappropriate therapy to a patient.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Eduardo N. Warman, John E. Burnes, Koen J. Michels, Paul D. Ziegler, Lilian Kornet
  • Patent number: 8301263
    Abstract: A first implantable medical device (IMD) implanted within a patient may communicate with a second IMD implanted within the patient by encoding information in an electrical stimulation signal. The delivery of the electrical stimulation signal may provide therapeutic benefits to the patient. The second IMD may sense the electrical stimulation signal, which may be presented as an artifact in a sensed cardiac signal, and process the sensed signal to retrieve the encoded information. The second IMD may modify its operation based on the received therapy information. Crosstalk between the first and second IMDs may be reduced using various techniques described herein. For example, the first IMD may generate the electrical stimulation signal to include a spread spectrum energy distribution or a predetermined signal signature. The second IMD may effectively remove a least some of the signal artifact in a sensed cardiac signal based on the predetermined signal signature.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 30, 2012
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, Paul G. Krause, Gerald P. Arne, John E. Burnes, David J. Peichel, Xiaohong Zhou
  • Patent number: 8290593
    Abstract: An implantable medical device (IMD) may include at least two separate lead connection assemblies, each with electrical connectors for connecting implantable leads to the IMD. In some examples, a IMD may include a first therapy module configured to generate a first electrical stimulation therapy and a second therapy module configured to generate a second electrical stimulation therapy for delivery to the patient. The IMD may include a first lead connection assembly including a first electrical connector electrically coupled to the first therapy module and a second lead connection assembly including a second electrical connector electrically coupled to the second therapy module. In some examples, the first and second lead connection assemblies are distributed around the outer perimeter of the IMD housing.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 16, 2012
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Libbey, William T. Donofrio, John E. Burnes, Paul G. Krause, Michael K. Berquist, Olivier Blandin, Michael Hudziak, William L. Johnson, John E. Nicholson, George Patras, Andrew J. Ries, Jeffrey Swanson, Paul Vahle, Thomas J. Olson, William K. Wenger, Michael R. Klardie, Samira Tahvildari
  • Publication number: 20120259389
    Abstract: In some examples, the disclosure relates to a systems, devices, and techniques for delivering electrical stimulation therapy to a patient. In some example, the disclosure relates to systems and methods of treating hyperglycemia in a patient including delivering gastric electrical stimulation (GES) to the patient. Devices, systems and methods according to the disclosure may comprise an implantable stimulator, a blood glucose monitor and/or a food intake sensor. In some examples, a blood glucose level and/or food intake of a patient is detected and GES is delivered to the patient in response to the detection.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 11, 2012
    Inventors: Warren Starkebaum, John E. Burnes, Roland C. Maude-Griffin
  • Patent number: 8265771
    Abstract: A therapy or monitoring system may implement one or more techniques to mitigate interference between operation of a charging device that charges a first implantable medical device (IMD) implanted in a patient and a second IMD implanted in the patient. In some examples, the techniques may include modifying an operating parameter of the charging device in response to receiving an indication that a second IMD is implanted in the patient. The techniques also may include modifying an operating parameter of the second IMD in response to detecting the presence or operation of the charging device.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: September 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, Paul Gordon Krause, Gerald P. Arne, James D. Reinke, David Jerome Peichel, Timothy Davis, John E. Burnes
  • Patent number: 8260412
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul G. Krause, John E. Burnes, William T. Donofrio, David J. Peichel, Gerald P. Arne, Xiaohong Zhou, James D. Reinke, Timothy Davis
  • Patent number: 8249708
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul G. Krause, John E. Burnes, William T. Donofrio, David J. Peichel, Gerald P. Arne, Xiaohong Zhou, James D. Reinke
  • Patent number: 8214041
    Abstract: This document provides a simple and automatic method for determining an optimal AV interval and/or range of AV intervals for, in an exemplary embodiment, LV-only pacing. Such a method provides significant advantages for patients while reducing burdens related to post-implant follow-up by clinicians in that it greatly reduces the need for doing echocardiographic-based AV interval optimization procedures as well as providing a way to dynamically optimize AV intervals as the patient moves about their activities of daily living (ADL).
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: July 3, 2012
    Assignee: Medtronic, Inc.
    Inventors: Berry M. Van Gelder, M. S. J. Pilmeyer, John E Burnes
  • Publication number: 20120150253
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Application
    Filed: February 20, 2012
    Publication date: June 14, 2012
    Applicant: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 8200335
    Abstract: A lead connection assembly of an implantable medical device (IMD) may include at least two different types of electrical connectors. In some examples, the lead connection assembly may include first and second electrical connectors that have at least one of a different electrical contact arrangement, a different lead connection receptacle geometry or a different size than the first electrical connector. The first electrical connector may be electrically connected to a first therapy module that generates cardiac rhythm therapy that is delivered to a heart of a patient, and the second electrical connector may be electrically connected to a second therapy module that generates electrical stimulation that is delivered to a tissue site within the patient. The second electrical connector may be configured to be incompatible with a lead that delivers the cardiac rhythm therapy to the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause
  • Patent number: 8135463
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 8046065
    Abstract: The disclosure provides methods and apparatus of left ventricular pacing including automated adjustment of a atrio-ventricular (AV) pacing delay interval and intrinsic AV nodal conduction testing. It includes—upon expiration or reset of a programmable AV Evaluation Interval (AVEI)—performing the following: temporarily increasing a paced AV interval and a sensed AV interval and testing for adequate AV conduction and measuring an intrinsic atrio-ventricular (PR) interval for a right ventricular (RV) chamber. Thus, in the event that the AV conduction test reveals a physiologically acceptable intrinsic PR interval then storing the physiologically acceptable PR interval in a memory structure (e.g., a median P-R from one or more cardiac cycles). In the event that the AV conduction test reveals an AV conduction block condition or if unacceptably long PR intervals are revealed then a pacing mode-switch to a bi-ventricular (Bi-V) pacing mode occurs and the magnitude of the AVEI is increased.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Karen J. Kleckner, Thomas J. Mullen
  • Patent number: 8005539
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 23, 2011
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Paul G. Krause, William T. Donofrio, Gerald P. Arne, David J. Peichel, Xiaohong Zhou, James D. Reinke, Timothy Davis