Patents by Inventor John E. Epler

John E. Epler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11695099
    Abstract: Embodiments of the invention include a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. A contact disposed on the p-type region includes a transparent conductive material in direct contact with the p-type region, a reflective metal layer, and a transparent insulating material disposed between the transparent conductive layer and the reflective metal layer. In a plurality of openings in the transparent insulating material, the transparent conductive material is in direct contact with the reflective metal layer.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 4, 2023
    Assignee: Lumileds LLC
    Inventors: John E. Epler, Aurelien J. F. David
  • Patent number: 10672949
    Abstract: A device comprising a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is disclosed. The device comprises a porous region. The device comprises a first layer disposed between the light emitting layer and the porous region. The device comprises a mask layer disposed between the porous region and the first layer. The device comprises a plurality of openings formed in the mask layer.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: June 2, 2020
    Assignee: Lumileds LLC
    Inventors: Jonathan J. Wierer, John E. Epler
  • Publication number: 20190103511
    Abstract: A device comprising a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is disclosed. The device comprises a porous region. The device comprises a first layer disposed between the light emitting layer and the porous region. The device comprises a mask layer disposed between the porous region and the first layer. The device comprises a plurality of openings formed in the mask layer.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Applicant: LUMILEDS LLC
    Inventors: Jonathan J. Wierer, John E. Epler
  • Patent number: 10090435
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 2, 2018
    Assignee: LUMILEDS LLC
    Inventors: Jonathan J. Wierer, John E. Epler
  • Publication number: 20160284935
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 29, 2016
    Inventors: Jonathan J. Wierer, John E. Epler
  • Patent number: 9385265
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 5, 2016
    Assignee: LUMILEDS LLC
    Inventors: Jonathan J. Wierer, Jr., John E. Epler
  • Patent number: 9076944
    Abstract: A compliant bonding structure is disposed between a semiconductor device and a mount. In some embodiments, the device is a light emitting device. When the semiconductor light emitting device is attached to the mount, for example by providing ultrasonic energy to the semiconductor light emitting device, the compliant bonding structure collapses to partially fill a space between the semiconductor light emitting device and the mount. In some embodiments, the compliant bonding structure is plurality of metal bumps that undergo plastic deformation during bonding. In some embodiments, the compliant bonding structure is a porous metal layer.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: July 7, 2015
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: James G. Neff, John E. Epler, Stefano Schiaffino
  • Patent number: 8679869
    Abstract: An AlGaInP light emitting device is formed as a thin, flip chip device. The device includes a semiconductor structure comprising an AlGaInP light emitting layer disposed between an n-type region and a p-type region. N- and p-contacts electrically connected to the n- and p-type regions are both formed on the same side of the semiconductor structure. The semiconductor structure is connected to a mount via the contacts. A growth substrate is removed from the semiconductor structure and a thick transparent substrate is omitted, such that the total thickness of semiconductor layers in the device is less than 15 ?m some embodiments, less than 10 ?m in some embodiments. The top side of the semiconductor structure may be textured.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 25, 2014
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Rafael I. Aldaz, John E. Epler, Patrick N. Grillot, Michael R. Krames
  • Patent number: 8581229
    Abstract: A device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. A transparent, conductive non-III-nitride material is disposed in direct contact with the n-type region. A total thickness of semiconductor material between the light emitting layer and the transparent, conductive non-III-nitride material is less than one micron.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 12, 2013
    Assignees: Koninklijke Philips N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Frederic Dupont, John E. Epler
  • Patent number: 8486725
    Abstract: A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: July 16, 2013
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Steven Paolini, Michael D. Camras, Oscar A. Chao Pujol, Frank M. Steranka, John E. Epler
  • Patent number: 8450754
    Abstract: LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 28, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Michael R. Krames, John E. Epler, Daniel A. Steigerwald, Tal Margalith
  • Patent number: 8334155
    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: December 18, 2012
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael R. Krames, Nathan F. Gardner, John E. Epler
  • Patent number: 8314443
    Abstract: A device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure includes an n-contact region and a p-contact region. A cross section of the n-contact region comprises a plurality of first regions wherein portions of the light emitting layer and p-type region are removed to expose the n-type region. The plurality of first regions are separated by a plurality of second regions wherein the light emitting layer and p-type region remain in the device. The device further includes a first metal contact formed over the semiconductor structure in the p-contact region and a second metal contact formed over the semiconductor structure in the n-contact region. The second metal contact is in electrical contact with at least one of the second regions in the n-contact region.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: November 20, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company LLC
    Inventor: John E Epler
  • Patent number: 8288186
    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 16, 2012
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael R. Krames, Nathan F. Gardner, John E. Epler
  • Publication number: 20120238041
    Abstract: A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: STEVEN PAOLINI, MICHAEL D. CAMRAS, OSCAR ARTURO CHAO PUJOL, FRANK M. STERANKA, JOHN E. EPLER
  • Publication number: 20120225505
    Abstract: A compliant bonding structure is disposed between a semiconductor device and a mount. In some embodiments, the device is a light emitting device. When the semiconductor light emitting device is attached to the mount, for example by providing ultrasonic energy to the semiconductor light emitting device, the compliant bonding structure collapses to partially fill a space between the semiconductor light emitting device and the mount. In some embodiments, the compliant bonding structure is plurality of metal bumps that undergo plastic deformation during bonding. In some embodiments, the compliant bonding structure is a porous metal layer.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: James G. Neff, John E. Epler, Stefano Schiaffino
  • Patent number: 8257989
    Abstract: A semiconductor structure includes a light emitting layer disposed between an n-type region and a p-type region. A p-electrode is disposed on a portion of the p-type region. The p-electrode includes a reflective first material in direct contact with a first portion of the p-type region and a second material in direct contact with a second portion of the p-type region adjacent to the first portion. The first material and second material are formed in planar layers of substantially the same thickness.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: September 4, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventor: John E. Epler
  • Publication number: 20120217533
    Abstract: A device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure includes an n-contact region and a p-contact region. A cross section of the n-contact region comprises a plurality of first regions wherein portions of the light emitting layer and p-type region are removed to expose the n-type region. The plurality of first regions are separated by a plurality of second regions wherein the light emitting layer and p-type region remain in the device. The device further includes a first metal contact formed over the semiconductor structure in the p-contact region and a second metal contact formed over the semiconductor structure in the n-contact region. The second metal contact is in electrical contact with at least one of the second regions in the n-contact region.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 30, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: JOHN E. EPLER
  • Publication number: 20120199863
    Abstract: Embodiments of the invention include a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. A contact disposed on the p-type region includes a transparent conductive material in direct contact with the p-type region, a reflective metal layer, and a transparent insulating material disposed between the transparent conductive layer and the reflective metal layer. In a plurality of openings in the transparent insulating material, the transparent conductive material is in direct contact with the reflective metal layer.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Inventors: John E. Epler, Aurelien J.F. David
  • Patent number: 8236582
    Abstract: Light emitting diode (LED) structures are fabricated in wafer scale by mounting singulated LED dies on a carrier wafer or a stretch film, separating the LED dies to create spaces between the LED dies, applying a reflective coating over the LED dies and in the spaces between the LED dies, and separating or breaking the reflective coating in the spaces between the LED dies such that some reflective coating remains on the lateral sides of the LED die. Portions of the reflective coating on the lateral sides of the LED dies may help to control edge emission.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: August 7, 2012
    Assignees: Philips Lumileds Lighting Company, LLC, Koninklijke Philips Electronics N.V.
    Inventors: James G. Neff, Serge J. Bierhuizen, John E. Epler