Patents by Inventor John H. Burdett, Jr.

John H. Burdett, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160260514
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu CHEN, David M. GIBSON, Walter M. GIBSON, Adam BAILEY, R. Scott SEMKEN, Kai XIN, John H. BURDETT, JR.
  • Patent number: 9360440
    Abstract: A sample handling apparatus/technique/method are provided for a material analyzer, including: a sample cell insert for carrying sample to and from a sample focal area of the analyzer; a removable sample carrying device for providing sample to the cell insert; and an actuator to flow sample from the carrying device to the sample cell insert. The removable sample carrying device may be a syringe, and the actuator pushes a plunger of the syringe to expel the sample to the sample cell insert. The sample cell insert may be mounted onto a sample cell, the sample cell being insertable into the analyzer for sample analysis. The sample handling apparatus may be used in combination with an optic-enabled x-ray analyzer, the x-ray analyzer including an x-ray engine with an x-ray excitation path and an x-ray detection path, wherein the x-ray excitation and/or the x-ray detection path define the sample focal area.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 7, 2016
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: George Allen, John H. Burdett, Jr., Zewu Chen, Leslie Johnson
  • Patent number: 9343193
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: May 17, 2016
    Assignee: X-RAY OPTICAL SYSTEMS, INC
    Inventors: Zewu Chen, David M. Gibson, Walter M. Gibson, Adam Bailey, R. Scott Semken, Kai Xin, John H. Burdett, Jr.
  • Publication number: 20150262722
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu CHEN, David M. GIBSON, Walter M. GIBSON, Adam BAILEY, R. Scott SEMKEN, Kai XIN, John H. BURDETT, Jr.
  • Patent number: 9048001
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: June 2, 2015
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu Chen, David M. Gibson, Walter M. Gibson, Adam Bailey, R. Scott Semken, Kai Xin, John H. Burdett, Jr.
  • Publication number: 20140270063
    Abstract: A sample handling apparatus/technique/method are provided for a material analyzer, including: a sample cell insert for carrying sample to and from a sample focal area of the analyzer; a removable sample carrying device for providing sample to the cell insert; and an actuator to flow sample from the carrying device to the sample cell insert. The removable sample carrying device may be a syringe, and the actuator pushes a plunger of the syringe to expel the sample to the sample cell insert. The sample cell insert may be mounted onto a sample cell, the sample cell being insertable into the analyzer for sample analysis. The sample handling apparatus may be used in combination with an optic-enabled x-ray analyzer, the x-ray analyzer including an x-ray engine with an x-ray excitation path and an x-ray detection path, wherein the x-ray excitation and/or the x-ray detection path define the sample focal area.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: George ALLEN, John H. BURDETT, JR., Zewu CHEN, Leslie JOHNSON
  • Publication number: 20140105363
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu CHEN, David M. GIBSON, Walter M. GIBSON, Adam BAILEY, R. Scott SEMKEN, Kai XIN, John H. BURDETT, JR.
  • Patent number: 7738630
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced, the source spot requiring alignment along a transmission axis passing through the sample spot. A first housing section is provided, to which the x-ray tube is attached, including mounting features for adjustably mounting the x-ray tube therein such that the source spot coincides with the transmission axis. A second housing section includes a second axis coinciding with the transmission axis; and at least one x-ray optic attached to the second housing section for receiving the diverging x-ray beam and directing the beam toward the sample spot. Complimentary mating surfaces may be provided to align the first and second sections, and the optics, to the transmission axis. A third housing section may also be provided, including an aperture through which the x-ray beam passes, and to which a detector may be attached.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: June 15, 2010
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: John H. Burdett, Jr., Adam Bailey, Zewu Chen, R. Scott Semken, Kai Xin
  • Patent number: 7729471
    Abstract: A sample cell for an analysis instrument, having an outer body forming a sample reservoir therein; a directional fill valve disposed in an upper end of the outer body and forming an upper end of the sample reservoir, the fill valve for accepting a sample during filling, and preventing sample leakage while providing venting after filling; and a film covering a lower end of the outer body, and forming a bottom end of the sample reservoir, the film for presenting the sample to an analysis focal spot of the analysis instrument. The disclosed sample cell is especially suited for an x-ray analysis engine having a focal spot requiring alignment with the sample in the sample cell. At least one x-ray optic may be disposed in an excitation and/or detection path, requiring alignment to the focal spot, in e.g., a WDXRF or EDXRF system.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 1, 2010
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: John H. Burdett, Jr., Daniel L. Dunham, James B. Quinn
  • Publication number: 20090225948
    Abstract: An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced, the source spot requiring alignment along a transmission axis passing through the sample spot. A first housing section is provided, to which the x-ray tube is attached, including mounting features for adjustably mounting the x-ray tube therein such that the source spot coincides with the transmission axis. A second housing section includes a second axis coinciding with the transmission axis; and at least one x-ray optic attached to the second housing section for receiving the diverging x-ray beam and directing the beam toward the sample spot. Complimentary mating surfaces may be provided to align the first and second sections, and the optics, to the transmission axis. A third housing section may also be provided, including an aperture through which the x-ray beam passes, and to which a detector may be attached.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: John H. BURDETT, JR., Adam BAILEY, Zewu CHEN, R. Scott SEMKEN, Kai XIN
  • Publication number: 20090141867
    Abstract: A sample cell for an analysis instrument, having an outer body forming a sample reservoir therein; a directional fill valve disposed in an upper end of the outer body and forming an upper end of the sample reservoir, the fill valve for accepting a sample during filling, and preventing sample leakage while providing venting after filling; and a film covering a lower end of the outer body, and forming a bottom end of the sample reservoir, the film for presenting the sample to an analysis focal spot of the analysis instrument. The disclosed sample cell is especially suited for an x-ray analysis engine having a focal spot requiring alignment with the sample in the sample cell. At least one x-ray optic may be disposed in an excitation and/or detection path, requiring alignment to the focal spot, in e.g., a WDXRF or EDXRF system.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: John H. BURDETT, JR., Daniel L. DUNHAM, James B. QUINN
  • Patent number: 7519159
    Abstract: A method and device for cooling and electrically-insulating a high-voltage, heat-generating component, for example, an x-ray tube (1105) for analyzing fluids by means of x-ray fluorescence. The device includes an x-ray source (1100) including an x-ray tube (1105) having improved heat-dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (1150). The device may include a base assembly (1135) mounted to the component for conducting heat away from the component while electrically isolating the component. In one aspect of the invention, the base assembly includes two copper plates (1140, 1145) separated by a dielectric plate (1150). The dielectric plate minimizes or prevents the leakage of current through the base assembly (1135). One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: April 14, 2009
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen
  • Patent number: 7515684
    Abstract: A method and apparatus for analyzing fluids by means of x-ray fluorescence. The method and apparatus are applicable to any fluid, including liquids and gases, having at least one component that emits x-ray fluorescence when exposed to x-rays. The apparatus includes an x-ray source (82) including an x-ray tube (64) having improved heat dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (70, 1150). The x-ray tube also includes means for aligning (100, 2150, 2715) the x-ray tube with the x-ray source housing whereby the orientation of the x-ray beam produced by the x-ray source can be optimized, and stabilized various over operating conditions. The method and apparatus may also include an x-ray detector having a small-area, for example, a PIN-diode type semiconductor x-ray detector (120), that can provide effective x-ray detection at room temperature.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: April 7, 2009
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: David M. Gibson, John H. Burdett, Jr., Ian Radley
  • Patent number: 7209545
    Abstract: An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: April 24, 2007
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen, Michael D. Moore
  • Patent number: 7110506
    Abstract: A method and device for cooling and electrically-insulating a high-voltage, heat-generating component, for example, an x-ray tube (1105) for analyzing fluids by means of x-ray fluorescence. The device includes an x-ray source (1100) including an x-ray tube (1105) having improved heat-dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (1150). The device may include a base assembly (1135) mounted to the component for conducting heat away from the component while electrically isolating the component. In one aspect of the invention, the base assembly includes two copper plates (1140, 1145) separated by a dielectric plate (1150). The dielectric plate minimizes or prevents the leakage of current through the base assembly (1135). One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: September 19, 2006
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen
  • Patent number: 7092843
    Abstract: A measurement and processing technique enabling x-ray analysis systems to handle dynamically changing samples and other conditions resulting in both significant and insignificant measurement changes. A stream of input values related to measured compositional information of the sample is received, and a stream of output compositional values is produced. The current output value y[n] is set as a function of the received input value x[n] if the received input value x[n] differs from x[n?1] by more than an intensity-dependent deviation limit; and alternatively the current output y[n] is set as a function of the previous output y[n?1] and the received input value x[n] if the received input value x[n] differs from x[n?1] by less than the intensity-dependent deviation limit. The intensity-dependent deviation limit is maintained as a function of the intensity of the measured compositional information.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: August 15, 2006
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Michael D. Moore, John H. Burdett, Jr., Ian Radley, Stuart M. Shakshober
  • Patent number: 7072439
    Abstract: A technique for analyzing fluids by means of x-ray fluorescence applicable to any fluid, including liquids and gases, which emit x-ray fluorescence when exposed to x-rays. The apparatus includes an x-ray source (82) including an x-ray tube (64) having improved heat dissipating properties due to a thermally-conductive, dielectric material (70, 1150). The x-ray tube also includes means for aligning (100, 2150, 2715) the tube with the source housing whereby the orientation of the x-ray beam produced by the source can be optimized, and stabilized over various operating conditions. The method and apparatus may also include an x-ray detector having a small-area, for example, a PIN-diode type semiconductor x-ray detector (120), that can provide effective x-ray detection at room temperature. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: July 4, 2006
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen, Michael D. Moore
  • Patent number: 6935778
    Abstract: Methods and devices for aligning an x-ray optic with a source of x-rays and methods and devices for determining a focusing characteristic of an x-ray optic are provided. The methods and devices simplify the process of aligning an x-ray optic device (for example, a polycapillary x-ray optic) to an x-ray source or for measuring a focusing characteristic, for example, the focal length or beam shape, of an x-ray optic. In one aspect, the device includes a housing having a first aperture adapted for receiving an x-ray optic and a surface having an x-ray flourescent material from which visual fluorescence occurs when impinged by x-rays. The size and shape of fluorescence from the surface may be varied by moving the surface to determine, for example, the focal length of the x-ray optic.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: August 30, 2005
    Assignee: X-Ray Optical Systems Incorporated
    Inventors: Thomas J. Bievenue, John H. Burdett, Jr.
  • Patent number: D628709
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: December 7, 2010
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: John H. Burdett, Jr., Daniel L. Dunham, James B. Quinn