Patents by Inventor John H. Perepezko

John H. Perepezko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8778459
    Abstract: A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (?1 atomic %), chromium (14 to 18 atomic %), molybdenum (?7 atomic %), tungsten (?1 atomic %), boron (?5 atomic %), or carbon (?4 atomic %).
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: July 15, 2014
    Assignees: Lawrence Livermore National Security, LLC., The Regents of the University of California, Sandia Corporation
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Nancy Yang, Enrique J. Lavernia, Craig A. Blue, Olivia A. Graeve, Robert Bayles, John H. Perepezko, Larry Kaufman, Julie Schoenung, Leo Ajdelsztajn
  • Patent number: 8524053
    Abstract: A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 3, 2013
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Xiaoyan (Jane) Ji, Sumner D. Day, Craig A. Blue, John D. K. Rivard, Louis F. Aprigliano, Leslie K. Kohler, Robert Bayles, Edward J. Lemieux, Nancy Yang, John H. Perepezko, Larry Kaufman, Arthur Heuer, Enrique J. Lavernia
  • Patent number: 8480864
    Abstract: A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 9, 2013
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Xiaoyan (Jane) Ji, Sumner D. Day, Craig A. Blue, John D. K. Rivard, Louis F. Aprigliano, Leslie K. Kohler, Robert Bayles, Edward J. Lemieux, Nancy Yang, John H. Perepezko, Larry Kaufman, Arthur Heuer, Enrique J. Lavernia
  • Patent number: 8097303
    Abstract: Methods for producing multilayered, oxidation-resistant structures on substrates are provided. The methods comprise depositing silicon dioxide on a substrate comprising molybdenum and boron and annealing the silicon dioxide at a temperature and for a time sufficient to form a coating comprising a borosilicate scale on the substrate.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 17, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Joon S. Park, Ridwan Sakidja
  • Publication number: 20110165348
    Abstract: A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
    Type: Application
    Filed: February 14, 2011
    Publication date: July 7, 2011
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, Frank M.G. Wong, Jeffery J. Haslam, Xiaoyan (Jane) Ji, Sumner D. Day, Craig A. Blue, John D.K. Rivard, Louis F. Aprigliano, Leslie K. Kohler, Robert Bayles, Edward J. Lemieux, Nancy Yang, John H. Perepezko, Larry Kaufman, Arthur Heuer, Enrique J. Lavernia
  • Publication number: 20100084052
    Abstract: A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
    Type: Application
    Filed: November 9, 2006
    Publication date: April 8, 2010
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Xiaoyan (Jane) Ji, Sumner D. Day, Craig A. Blue, John D. K. Rivard, Louis F. Aprigliano, Leslie K. Kohler, Robert Bayles, Edward J. Lemieux, Nancy Yang, John H. Perepezko, Larry Kaufman, Arthur Heuer, Enrique J. Lavernia
  • Publication number: 20100028550
    Abstract: A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (?1 atomic %), chromium (14 to 18 atomic %), molybdenum (?7 atomic %), tungsten (?1 atomic %), boron (?5 atomic %), or carbon (?4 atomic %).
    Type: Application
    Filed: October 1, 2009
    Publication date: February 4, 2010
    Inventors: Joseph C. Farmer, Frank M.G. Wong, Jeffery J. Haslam, Nancy Yang, Enrique J. Lavernia, Craig A. Blue, Olivia A. Graeve, Robert Bayles, John H. Perepezko, Larry Kaufman, Julie Schoenung, Leo Ajdelsztajn
  • Publication number: 20100021750
    Abstract: A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (?1 atomic %), chromium (14 to 18 atomic %), molybdenum (?7 atomic %), tungsten (?1 atomic %), boron (?5 atomic %), or carbon (?4 atomic %).
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Inventors: Joseph C. Farmer, Frank M.G. Wong, Jeffery J. Haslam, Nancy Yang, Enrique J. Lavernia, Craig A. Blue, Olivia A. Graeve, Robert Bayles, John H. Perepezko, Larry Kaufman, Julie Schoenung, Leo Ajdelsztajn
  • Publication number: 20090291312
    Abstract: The invention provides oxidation resistant coatings for transition metal substrates and transition metal alloy substrates and method for producing the same. The coatings may be multilayered, multiphase coatings or gradient multiphase coatings. In some embodiments the transition metal alloys may be boron-containing molybdenum silicate-based binary and ternary alloys. The coatings are integrated into the substrates to provide durable coatings that stand up under extreme temperature conditions.
    Type: Application
    Filed: May 29, 2009
    Publication date: November 26, 2009
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: John H. Perepezko, Joon S. Park, Ridwan Sakidja
  • Patent number: 7618500
    Abstract: A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (?1 atomic %), chromium (14 to 18 atomic %), molybdenum (?7 atomic %), tungsten (?1 atomic %), boron (?5 atomic %), or carbon (?4 atomic %).
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: November 17, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Nancy Yang, Enrique J. Lavernia, Craig A. Blue, Olivia A. Graeve, Robert Bayles, John H. Perepezko, Larry Kaufman, Julie Schoenung, Leo Ajdelsztajn
  • Patent number: 7560138
    Abstract: The invention provides oxidation resistant coatings for transition metal substrates and transition metal alloy substrates and method for producing the same. The coatings may be multilayered, multiphase coatings or gradient multiphase coatings. In some embodiments the transition metal alloys may be boron-containing molybdenum silicate-based binary and ternary alloys. The coatings are integrated into the substrates to provide durable coatings that stand up under extreme temperature conditions.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 14, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Joon S. Park, Ridwan N. Sakidja
  • Patent number: 7005191
    Abstract: The invention provides oxidation resistant coatings for transition metal substrates and transition metal alloy substrates and method for producing the same. The coatings may be multilayered, multiphase coatings or gradient multiphase coatings. In some embodiments the transition metal alloys may be boron-containing molybdenum silicate-based binary and ternary alloys. The coatings are integrated into the substrates to provide durable coatings that stand up under extreme temperature conditions.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: February 28, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Joon S. Park, Ridwan Sakidja
  • Publication number: 20040219295
    Abstract: The invention provides oxidation resistant coatings for transition metal substrates and transition metal alloy substrates and method for producing the same. The coatings may be multilayered, multiphase coatings or gradient multiphase coatings. In some embodiments the transition metal alloys may be boron-containing molybdenum silicate-based binary and ternary alloys. The coatings are integrated into the substrates to provide durable coatings that stand up under extreme temperature conditions.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Inventors: John H. Perepezko, Joon S. Park, Ridwan Sakidja
  • Patent number: 6436208
    Abstract: A process of preparing aligned, in-situ, two-phase single crystal alloys of titanium, aluminum and niobium which comprises growing the alloys at rates of about 3.0 mm. to about 6.0 mm. per hour by rotating a seed rod alloy consisting essentially of Ti-43 to 45 Al-10 to 12 Nb+0.5 Si, in atomic percent, at about 7.75 to 8.25 RPM while in contact with a rotating feed rod alloy consisting essentially of Ti-43 to 45 Al-10 to 12 Nb, in atomic-percent, rotating at about 5.75 to 6.25 RPM in an atmosphere of substantially pure argon at melt temperatures ranging from about 1650° C. to 1750° C. to obtain two-phase single crystal alloys of Ti-43 to 45Al-10 to 12 Nb characterized as having improved ductility, excellent oxidation resistance, and high-temperature creep strength. These alloys are particularly useful for manufacturing high-temperature material components for internal combustion engines, gas turbines, and advanced aircraft engines.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: August 20, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Rabindra Mahapatra, Eui W. Lee, Jeffrey Waldman, John H. Perepezko
  • Patent number: 6376074
    Abstract: A debonding layer is formed on fibers such as silicon carbide fibers by forming a thin film of a metal such as nickel or iron on the silicon carbide fibers and then annealing at a temperature of about 350-550° C. to form a debond layer of a metal silicide and carbon. These fibers having the debond coating can be added to composite forming materials and the mixture treated to form a consolidated composite. A one heating-step method to form a consolidated composite involves inserting the silicon carbide fibers with just the initial metal film coating into the composite forming materials and then heating the mixture to form the debond coating in situ on the fibers and to form the consolidated composite. Preferred heating techniques include high temperature annealing, hot-pressing, or hot isostatic pressing (HIP).
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 23, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard K. Everett, Alan S. Edelstein, John H. Perepezko
  • Publication number: 20010022208
    Abstract: Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
    Type: Application
    Filed: February 27, 2001
    Publication date: September 20, 2001
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: John H. Perepezko, Donald R. Allen, James C. Foley
  • Patent number: 6261386
    Abstract: Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: July 17, 2001
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Donald R. Allen, James C. Foley
  • Patent number: 6056907
    Abstract: A debonding layer is formed on fibers such as silicon carbide fibers by fing a thin film of a metal such as nickel or iron on the silicon carbide fibers and then annealing at a temperature of about 350-550.degree. C. to form a debond layer of a metal silicide and carbon. These fibers having the debond coating can be added to composite forming materials and the mixture treated to form a consolidated composite. A one heating-step method to form a consolidated composite involves inserting the silicon carbide fibers with just the initial metal film coating into the composite forming materials and then heating the mixture to form the debond coating in situ on the fibers and to form the consolidated composite. Preferred heating techniques include high temperature annealing, hot-pressing, or hot isostatic pressing (HIP).
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: May 2, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard K. Everett, Alan S. Edelstein, John H. Perepezko
  • Patent number: 5066324
    Abstract: The Droplet Emulsion Technique is used to produce droplets of bulk metal or metal alloys containing inoculant particles. Heterogeneous nucleation responses are then separated and identified with variances in inoculant chemistry, size, morphology, and surface conditions in the different droplets. Differential Thermal Analysis (DTA) is used to detect and to correlate thermal signals generated from as little as 50 droplets 75-100 .mu.m in size, allowing the separation of signals generated by a minor fraction of the total droplet population. Quenching treatments are used on the samples during thermal analysis to retain the original solidification microstructures produced from effective inoculation. Differences between droplet solidification microstructures preserved from the quenching treatments allow for visual identification of effective and ineffective inoculant particles.
    Type: Grant
    Filed: February 26, 1991
    Date of Patent: November 19, 1991
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Mark K. Hoffmeyer
  • Patent number: 4630094
    Abstract: Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.
    Type: Grant
    Filed: March 8, 1985
    Date of Patent: December 16, 1986
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John D. Wiley, John H. Perepezko