Patents by Inventor John M. Larson

John M. Larson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7221019
    Abstract: A MOSFET device and method of fabricating is provided. The MOSFET device and method of fabricating utilizes Schottky barrier contacts for source and/or drain contact fabrication within the context of a MOSFET device structure to eliminate the requirement for halo/pocket implants and shallow source/drain extensions to control short channel effects. Additionally, the MOSFET device and method unconditionally eliminates the parasitic bipolar gain associated with MOSFET fabrication, reduces manufacturing costs, tightens control of device performance parameters, and provides for superior device characteristics.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 22, 2007
    Assignee: Spinnaker Semiconductor, Inc.
    Inventors: John P. Snyder, John M. Larson
  • Patent number: 7124237
    Abstract: Apparatus and method for emulating a virtual machine within the physical memory space of a programmable processor using virtual functions having a format independent of the hardware architecture of the processor. The virtual functions are executed using an execution engine emulated in the processor. A symbol table maps the virtual functions to native functions in the memory space, and a gate call interface block accesses the symbol table and initiates execution of the corresponding native function in response to each executed virtual function. Execution of the corresponding native function operates to evaluate the concurrent execution of at least one other native function. In this way for example, standardized platform virtual code can be generated for a number of different types of processors and used to evaluate the native operational routines of each processor.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 17, 2006
    Assignee: Seagate Technology LLC
    Inventors: Chad R. Overton, Sunil A. Mehta, John M. Larson, Scott E. Errington
  • Patent number: 6974737
    Abstract: A CMOS device and method of fabrication are disclosed. The present invention utilizes Schottky barrier contacts for source and/or drain contact fabrication within the context of a CMOS device and CMOS integrated circuits, to eliminate the requirement for halo/pocket implants, shallow source/drain extensions to control short channel effects, well implant steps, and complex device isolation steps. Additionally, the present invention eliminates the parasitic bipolar gain associated with CMOS device operation, reduces manufacturing costs, tightens control of device performance parameters, and provides for superior device characteristics as compared to the prior art. The present invention, in one embodiment, uses a silicide exclusion mask process to form the dual silicide Schottky barrier source and/or drain contact for the complimentary PMOS and NMOS devices forming the CMOS device.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: December 13, 2005
    Assignee: Spinnaker Semiconductor, Inc.
    Inventors: John P. Snyder, John M. Larson
  • Patent number: 6949787
    Abstract: The invention is directed to a device for regulating the flow of electric current with high dielectric constant gate insulating layer and a source and/or drain forming a Schottky contact or Schottky-like region with a substrate and its fabrication method. In one aspect, the gate insulating layer has a dielectric constant greater than the dielectric constant of silicon. In another aspect, the current regulating device may be a MOSFET device, optionally a planar P-type or N-type MOSFET, having any orientation. In another aspect, the source and/or drain may consist partially or fully of a silicide.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: September 27, 2005
    Assignee: Spinnaker Semiconductor, Inc.
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20040171240
    Abstract: The invention is directed to a device for regulating the flow of electric current with high dielectric constant gate insulating layer and a source and/or drain forming a Schottky contact or Schottky-like region with a substrate and its fabrication method. In one aspect, the gate insulating layer has a dielectric constant greater than the dielectric constant of silicon. In another aspect, the current regulating device may be a MOSFET device, optionally a planar P-type or N-type MOSFET, having any orientation. In another aspect, the source and/or drain may consist partially or fully of a silicide.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 2, 2004
    Inventors: John P. Snyder, John M. Larson
  • Patent number: 6784035
    Abstract: The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: August 31, 2004
    Assignee: Spinnaker Semiconductor, Inc.
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20040123290
    Abstract: Apparatus and method for emulating a virtual machine within the physical memory space of a programmable processor using virtual functions having a format independent of the hardware architecture of the processor. The virtual functions are executed using an execution engine emulated in the processor. A symbol table maps the virtual functions to native functions in the memory space, and a gate call interface block accesses the symbol table and initiates execution of the corresponding native function in response to each executed virtual function. Execution of the corresponding native function operates to evaluate the concurrent execution of at least one other native function. In this way for example, standardized platform virtual code can be generated for a number of different types of processors and used to evaluate the native operational routines of each processor.
    Type: Application
    Filed: October 3, 2003
    Publication date: June 24, 2004
    Applicant: Seagate Technology LLC
    Inventors: Chad R. Overton, Sunil A. Mehta, John M. Larson, Scott E. Errington
  • Publication number: 20040041226
    Abstract: A CMOS device and method of fabrication are disclosed. The present invention utilizes Schottky barrier contacts for source and/or drain contact fabrication within the context of a CMOS device and CMOS integrated circuits, to eliminate the requirement for halo/pocket implants, shallow source/drain extensions to control short channel effects, well implant steps, and complex device isolation steps. Additionally, the present invention eliminates the parasitic bipolar gain associated with CMOS device operation, reduces manufacturing costs, tightens control of device performance parameters, and provides for superior device characteristics as compared to the prior art. The present invention, in one embodiment, uses a silicide exclusion mask process to form the dual silicide Schottky barrier source and/or drain contact for the complimentary PMOS and NMOS devices forming the CMOS device.
    Type: Application
    Filed: May 16, 2003
    Publication date: March 4, 2004
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20030235936
    Abstract: A CMOS device and method of fabrication are disclosed. The present invention utilizes Schottky barrier contacts for source and/or drain contact fabrication within the context of a CMOS device and CMOS integrated circuits, to eliminate the requirement for halo/pocket implants, shallow source/drain extensions to control short channel effects, well implant steps, and complex device isolation steps. Additionally, the present invention eliminates the parasitic bipolar gain associated with CMOS device operation, reduces manufacturing costs, tightens control of device performance parameters, and provides for superior device characteristics as compared to the prior art. The present invention, in one embodiment, uses a silicide exclusion mask process to form the dual silicide Schottky barrier source and/or drain contact for the complimentary PMOS and NMOS devices forming the CMOS device.
    Type: Application
    Filed: May 16, 2003
    Publication date: December 25, 2003
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20030139001
    Abstract: The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.
    Type: Application
    Filed: January 15, 2003
    Publication date: July 24, 2003
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20030034532
    Abstract: The invention is directed to a device for regulating the flow of electric current with high dielectric constant gate insulating layer and a source and/or drain forming a Schottky contact or Schottky-like region with a substrate and its fabrication method. In one aspect, the gate insulating layer has a dielectric constant greater than the dielectric constant of silicon. In another aspect, the current regulating device may be a MOSFET device, optionally a planar P-type or N-type MOSFET, having any orientation. In another aspect, the source and/or drain may consist partially or fully of a silicide.
    Type: Application
    Filed: August 9, 2002
    Publication date: February 20, 2003
    Inventors: John P. Snyder, John M. Larson